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Zusammenfassung

Das Ziel des Internationalen Thermonuklearen Experimentellen Reaktors (ITER) ist es zu
zeigen, dass in einem Tokamak-Plasma mehr Energie freigesetzt werden kann, als zur Heizung
benötigt wird. Das ist eine fundamentale Voraussetzung für zukünftige Fusionskraftwerke.
ITER ist jedoch ein experimenteller Reaktor und wird keine Energie in das Stromnetz einspei-
sen. DEMO soll als europäischer Nachfolger von ITER ein Demonstrationskraftwerk werden
und befindet sich in der Konzeptphase. Für ein zukünftiges Fusionskraftwerk kommen mehrere
Bauformen in Frage, jedoch ist die experimentelle Grundlage für das Tokamak-Konzept die
am weitesten fortgeschrittene. Die Bereitstellung von zusätzlichen Datenpunkten durch ITER
in der Skalierung von Plasmaparametern machen das Tokamak-Konzept für DEMO attraktiv.
In der Theorie ist ein Tokamak-Plasma 2D durch die Achsensymmetrie um die Torusachse. In
realen Tokamaks wird diese Symmetrie jedoch durch die endliche Anzahl an Toroidalfeldspulen
gebrochen. Das Toroidalfeld hat eine räumliche Variation mit der Periodizität der Anzahl der
Toroidalfeldspulen. Diese Variation wird toroidaler Feldrippel genannt. Sie ist eine 3D Störung
und ermöglicht Effekte, die die Güte des Energieeinschlusses reduzieren. Diese sollte jedoch
für ein wirtschaftlich attraktiven Fusionsreaktor maximal sein. Deshalb wird der Einfluss und
die Reduktion des toroidalen Feldrippels in einem DEMO Tokamak untersucht. Als Teil dieser
Untersuchungen werden MagnetoHydroDynamische (MHD) Gleichgewichte in dieser Thesis
betrachtet. Dafür werden Simulationscodes verknüpft, um die 3D Flussflächen in der statisch
idealen MHD mittels Minimierung der Plasmaenergie durch variieren der Flussflächengeome-
trie zu berechnen. Für ein wohldefiniertes MHD-Problem werden das Druck- und Plasma-
stromprofil vorgeschrieben. Diese Profile werden durch vorhergehende Transportsimulationen
bereitgestellt, zusammen mit der Geometrie des Plasmarands und dem gesamten toroidalen
magnetischen Fluss. Der toroidale magnetische Fluss ist dabei eine Erhaltungsgröße, der Plas-
marand jedoch wird variiert in 3D Simulationen zur Minimierung der Plasmaenergie. Für diese
Simulationen wird ein 3D Vakuuminduktionsfeld benötigt, welches durch das Biot-Savart Ge-
setz bestimmt wird. Dieses wird angewendet auf Stromfäden, welche ein Spulensystem aus
Toroidalfeldspulen, Poloidalfeldspulen und Transformator repräsentieren. Weiterhin werden
ferromagnetische Einlagen in der Wand des Vakuumgefäßes durch ein Spulenmodell eingebun-
den, welches ihre die Reduzierung des toroidalen Feldrippels reproduzieren kann.
Das System aus Simulationscodes wird erfolgreich angewendet, um die Plasmareaktion auf
den toroidalen Feldrippel für die neuesten DEMO baselines (2017-2019) zu berechnen. Die
Plasmareaktion wird dabei für ein L-mode- und H-mode-Szenario durch die Amplitude der
Flussflächenwellung untersucht. Der Bedarf für 3D Simulationen wird verdeutlicht durch ein
Vergleich der Vakuumapproximation zu 3D Simulationen mit beweglichem Plasmarand. Dabei
werden Abweichung zwischen 17 % und 26 % der Vakuumapproximation festgestellt. Weiterhin
wird die Erwartung, dass der toroidale Feldrippel eine nicht resonante Störung ist, für beide
Plasmaszenarien bestätigt. Dies wird erreicht durch einen direkten Vergleich des toroidalen
Feldrippels des Vakuumfeldes und der Amplitude der Flussflächenwellung des Plasmas.





Abstract

The goal of the International Thermonuclear Experimantal Reactor (ITER) is to show, that
inside a tokamak plasma more thermal fusion power can be released than it is needed for
heating the plasma. This is a fundamental requirement for future fusion power plants. How-
ever, ITER is an experimental reactor and will not feed energy into the grid. Currently in the
conceptual phase, DEMO is the European successor of ITER and is planned to be a demon-
stration fusion power plant. While several types of reactors are considered when building a
fusion power plant, the experimental basis of the tokamak concept is considered the most ad-
vanced. Using the intermediate data points in the scaling of the plasma parameters, provided
by ITER, makes a tokamak version of DEMO attractive.
In theory, a tokamak confines an axisymmetric 2D plasma around the major axis of the torus.
However, in a real tokamak the finite number of toroidal field coils breaks this symmetry.
The toroidal field has a spatial variation with a periodicity of the number of toroidal field
coils. This variation is called the toroidal field ripple and is a 3D perturbation of a tokamak
plasma. This gives rise to effects that reduce the energy confinement. Yet, to be economically
successful, the energy confinement of a fusion reactor should be maximized. Thus, the effect
and the reduction of the toroidal field ripple in a DEMO tokamak is investigated. As part
of these investigations, the MagnetoHydroDynamic (MHD) equilibria are considered in this
thesis. Therefore, a simulation code system is coupled, computing 3D flux surfaces in the
static ideal MHD equilibrium through minimization of the plasma energy by varying the
geometry of the flux surfaces. For this to be a well-defined MHD problem, the pressure and
plasma current profile are prescribed. These profiles are supplied from preceding turbulent
transport simulations, together with the plasma boundary and the total toroidal magnetic
flux. Whereas the toroidal magnetic flux is preserved, the plasma boundary evolves in 3D free-
boundary simulations to minimize the energy. Thus, a 3D vacuum induction field confining the
plasma needs to be provided for the simulations. This vacuum induction field is determined
by applying the Biot-Savart law to current carrying filaments, representing the conductors
of a coil system consisting of toroidal field coils, poloidal field coils and the central solenoid.
Furthermore, to treat ferromagnetic inserts in the vacuum vessel wall by current carrying
filaments a coil model, reproducing their reduction of the toroidal field ripple, is developed.
The newly coupled code system by is successfully applied to compute the plasma response to
the toroidal field ripple for the latest DEMO baselines (2017-2019). The plasma response for a
DEMO L-mode and H-mode is investigated by the amplitude of flux surface corrugation. The
need for inherent 3D simulations is shown by a comparison between the vacuum approximation
and a 3D free-boundary simulation. Deviations of 17 % to 26 % of the approximation to the 3D
data is observed. Furthermore, the expected non-resonant perturbation of the toroidal field
ripple is confirmed for the L-mode and for the H-mode. This is shown by direct comparison
between the toroidal field ripple in the vacuum induction field and the plasma response, given
by the amplitude of the flux surface corrugation.
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1 Introduction

1.1 DEMO as a tokamak

As successor of the experimental fusion reactor ITER (International Thermonuclear Experi-
mental Reactor), DEMO is supposed to be a fusion power plant feeding electrical energy into
the grid in Europe. DEMO is planned to be a demonstration power plant (hence, the name
DEMO) and achieving the transition of fusion reactors from an active field of research to an
industry and technology oriented program [1]. For this transition many aspects need to be
considered, e.g. maintainability, self sufficient fuel cycle and reactor safety. Besides these
technological challenges, DEMO has to fulfill economical criteria to serve as solution for a
realistic power plant in the future. A fundamental requirement is, that the released power
inside the reactor is greater than the used power. The released energy inside a fusion reactor
originates from fusion reactions of two nuclei to a single nucleus. The relevant fusion reaction
for this thesis is that of the hydrogen isotopes Deuterium (D) and Tritium (T) according to

2
1D + 3

1T −−→ 4
2He(3.52 MeV)+1

0n(14.06 MeV)⇒ Qfus = 17.58 MeV (1.1)

to a doubled charged α-particle 4
2He and an uncharged neutron 1

0n, with a distributed energy
release Qfus of a single reaction [2]. In order for this reaction to take place with a considerable
probability, the D-T mixture needs to be heated to the state of a plasma1. The criterion, that
the released fusion power Pfus is greater than the heating power Pheat, can be expressed in
terms of plasma parameters by the so-called Lawson criterion.
For the derivation of the Lawson-criterion the fusion power Pfus is given by

Pfus = n

2 ·
n

2 〈σv〉 ·Qfus (1.2)

where it is assumed, that D and T ions are contained in the same densities inside the plasma
and hence, both can be expressed as n/2. The middle term n/2 · 〈σv〉 is the probability per
unit time for a fusion reaction, based on the reactivity 〈σv〉 [2]2.
A further characteristic key figure for a fusion reactor is the energy confinement time τE,
defined by

τE = (3/2)n(Te + Ti)
PL +R

(
= confined energy

total power loss

)
(1.3)

1In the here presented work the confinement of this plasma in a external magnetic field is the only treated
possibility. Further possibilities would be the inertial confinement and the confinement by gravitation.

2The reactivity is the averaged value of σv over a Maxwellian distribution of velocities v. Thereby nTσv is
the probability of a fusion reaction per time, for a T ion in the density nT and velocity v and a reaction
cross section σ [2].
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with the temperature of electrons and ions, Te and Ti, in units of energy, the losses by con-
vection and heat conductivity combined in PL and the radiation losses R [2].
In a stationary condition, these losses are compensated by the heating power Pheat. To com-
bine the stationary state with the requirement Pheat < Pfus the recirculation parameter η
is introduced as Pheat = ηPfus to parameterize the inequality. Therefore η takes values of
η = [ηignited, 1], with ηignited explained below. Using eqs. (1.2) and (1.3) gives

Pheat = PL +R = 3nT
τE

= ηPfus ⇒
12T

ηQfus〈σv〉
= nτE (1.4)

where it is assumed that Te = Ti = T . The right side of the arrow is known as the Lawson
criterion. The expression 12T/ηQfus〈σv〉 is solely a function of the temperature T . Therefore
eq. (1.4) can be plotted in a so-called Lawson diagram. This is shown in figure 1.1 for different
values of η. A critical curve in this plot is η = ηignited = 0.2, because the charged α-particles,
as a product of the fusion reaction in eq. (1.1), carry approximately 20% of the energy. These
α-particles are charged and therefore confined in the plasma. The neutrons are unaffected by
the magnetic field and impinge in the wall, where they heat up a coolant for a steam generator.
Thus, the total heating power of the plasma Pheat = Pα +Paux is a combination of the heating
power by the α-particles and external auxiliary heating systems. If the energy of the fusion
born α-particles is sufficient to deliver the heating power in eq. (1.4) and no external heating
power Paux is required, the plasma is said to be ignited. DEMO is currently expected to work
close to the ignited condition in the range of ηDEMO = [0.225, 0.265] and thus, the plasma
fulfills the Lawson criterion.

101 102

1020

1021

T [keV ]

nτE[m
−3s]

η = 0.2, Q→ ∞
η = 0.3, Q = 10
η = 1.0, Q = 1.25

ηDEMO=[0.225,0.265]

ITER

Pfus = Pheat

ignition

Figure 1.1: Lawson diagram with curves from eq. (1.4) for different η-values. The curves show,
that there is a minimum in the temperature for fulfilling the Lawson criterion. The
values of η are supplemented by values for the Q-factor, which is defined as Q =
Pfus/Paux, with the external auxiliary heating power Paux. Hence, Q = (η−0.2)−1.
The approximation for the operating range of DEMO is based on the engineering
parameters of DEMO baseline 2018 in section 4.1.1 (Pfus = 2 GW, Pα = 0.2Pfus
and Paux = 50 MW...130 MW) and the assumption, that DEMO operates in the
region of the minimum temperature for the Lawson criterion. For comparison an
estimation of the operating point of ITER is included, according to data from [2]
for the inductive operation scenario. The plot is created based on eqs. from [2].
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DEMO as an European project, for the utilization of nuclear energy in fusion power plants,
is led by the organization EUROfusion. They published a road map, in which they outline
the basic approach and milestones, about the realization of the project. This road map is
depicted in figure 1.2. It is intended, to include all available information that is gained through
experiments like ITER and other projects in material research. In the second time arrow from
the bottom, one can see that it is not yet decided, whether the fusion power plant is going
to be a tokamak or a stellarator. These are the two dominant types of reactors for magnetic
confinement of a fusion plasma. This thesis works on the milestone of a consistent concept
and focuses exclusively on the tokamak-version for DEMO. Therefore, the basic structure of
a tokamak is introduced below.

this thesis

Figure 1.2: Road map with milestones of the European project DEMO, lead by EUROfusion.
It is planned to include scientific insides from the predecessor ITER, which is
designed as an experimental reactor,. Furthermore, material research and cost
optimization programs contribute to DEMO. The decision, of whether the fusion
power plant is going to be tokamak or a stellarator, needs to be decided at the
milestone of the consistent concept, which is not reached while this thesis is written.
Illustration from [3].

In a tokamak the plasma is confined by a coil system in a torus-shaped volume, which is
enclosed by a vacuum vessel. The main parts of the coil system of a tokamak consist of poloidal
field coils (PF coils), toroidal field coils (TF coils) and the central solenoid (CS). These coils
are depicted in figure 1.3, together with an introduction of the poloidal and toroidal direction
and a toroidal coordinate system {R,Z, φ}. The fields generated by these coils are referred
to as the vacuum induction fields. The toroidal field coils produce a magnetic induction field
along the toroidal direction with the dependence Bφ ∝ 1/R, characteristic for toroidal coils.
The magnetic field of the poloidal field coils is called the vertical field and is spanned by the
vector components BR and BZ , whereas Bφ = 0. A further magnetic field, the poloidal field,
is generated by a plasma current flowing in the toroidal direction of the torus. This poloidal
magnetic field is represented by the same vector components as the vertical field3. The plasma
current is induced by a time dependent current in the central solenoid.
In a superposition of the poloidal magnetic field, generated by the plasma current, and the
vertical field, generated from the poloidal field coils, the plasma can reach an equilibrium.

3Thereby a small contribution to the toroidal field due to the helically flowing plasma current is neglected.
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However, this equilibrium is unstable against perturbations. A second option would be the
confinement in a purely toroidal field, generated by the toroidal field coils. This confinement
would be more stable against perturbations, but due to the 1/R-dependence no equilibrium
exists. The applied solution is to superpose all three magnetic fields and design them, to reach
a stable equilibrium. Therefore the magnetic field lines twist around the minor axis of the
torus helically, while they circulate around the major axis [4].

PF coils

TF coils

CS Z → major axis

R

φ minor axis

Ator

Apol

Figure 1.3: Illustration of the basic setup of a tokamak. The coil system of toroidal field
coils (TF coils), poloidal field coils (PF coils) and central solenoid (CS) generates
a magnetic field to confine the plasma. Therefore, the plasma levitates in the
vacuum vessel, which encloses it inside the TF coils (see figure 4.3). An intuitive
coordinate system for a tours is spanned by the coordinates {R,Z, φ}, with radius
R, height Z and toroidal angle φ, as depicted in the fundamental tours. The Z-
axis in this system is called the major axis. Two basic directions are the toroidal
direction, indicated by the blue arrow around the major axis, and the poloidal
direction, indicated by the red arrows around the minor axis of the torus. These
directions are used to reference a toroidal cross section Ator enclosed by a poloidally
circulating curve around the minor axis (blue plane), and a poloidal cross section
Apol enclosed by the minor axis and a toroidally circulating curve on the torus
surface (red plane).

1.2 Motivation. Perturbation of axisymmetry by the
toroidal field ripple

A tokamak plasma is in theory axisymmetric around the major axis of the torus. However,
as it can be seen in figure 1.3, the axisymmetry is broken by the toroidal field coils. This
can be seen more clearly in the schematic illustration in figure 1.4. The field lines of the
toroidal induction field, generated by the toroidal field coils, are compressed underneath the
coils and relieved in between them. This creates a spatial variation on the toroidal component
of the magnetic field with a periodicity of the number of toroidal field coils, which is 16 for
DEMO. This variation is the so-called toroidal field ripple. The toroidal field ripple is a 3D
perturbation of the vacuum induction field and has an effect on the plasma confined in it. The
plasma becomes corrugated, according to the variation in the toroidal field. There are two
major reason, why 3D perturbations of a plasma are investigated.
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toroidal magnetic
field lines

16 toroidal field
coils

Figure 1.4: Schematic illustration of the toroidal field ripple in top view from the coil system
shown in figure 1.3, with a strongly enlarged amplitude for illustration purposes.
From the coil system only the toroidal field coils are depicted, because the toroidal
field ripple is an unintentional result of the finite number of toroidal field coils. As
planned for DEMO, 16 toroidal field coils are depicted. The blue lines represent
the toroidal magnetic field and show the radial widening in the space between
the coils. The bigger the space between the coils is, the larger is the widening.
Therefore the ripple is expected to be highest at the outboard side. This side is
also called the low-field side, because of the 1/R-dependence. Correspondingly,
the inboard side is called the high-field side.

First, the fast ions in the plasma are important for the plasma heating and the energy con-
finement. They are either orbiting around the major axis of the torus (passing particles) or
moving back and forth in a magnetic mirror, formed by high-field and low-field side of the
magnetic field (trapped particles). In an axisymmetric plasma both are confined, but trapped
particles can leave the plasma if it is corrugated in the toroidal direction [5]. These losses are
called ripple losses and need to be minimized for an improved energy confinement, as well as
to guarantee allowable heat loads on the first wall [6].
Second, in the physical model of the so-called ideal MHD (MagnetoHydroDynamic), the
plasma is described by nested, toroidal flux surfaces. These flux surfaces are onion-like lay-
ers, where each layer has a constant kinetic pressure. Therefore, a pressure gradient can be
established with high pressure in the core of the plasma and no pressure at the plasma edge,
for compatibility to the surrounding structure. Due to the break of the axisymmetry by 3D
perturbations the structure of nested flux surfaces can be interrupted. Such regions have
substantial radial transport of energy and thus, reduce the energy confinement time τE, as de-
scribed in more detail in section 2.3. Although it is explained in section 2.3, that the toroidal
field ripple is not expected to interrupt the structure of nested flux surfaces, the 3D modelling
of the coil systems, as it is needed for the study of the toroidal field ripple, is important for
investigation of further 3D perturbations.
As part of the investigations of 3D perturbations, this thesis has the aim to compute 3D flux
surfaces in the ideal MHD equilibrium. Thereby the focus is on the influence of the toroidal
field ripple on the flux surfaces geometry. The here presented investigation is addressed by
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means of two main objectives:

1. Coupling of a code system for the computation of flux surfaces in 3D vacuum induction
fields in the physical picture of the static ideal MHD equilibrium, starting with profiles
from turbulent transport simulations.

2. Compute the plasma response to the toroidal field ripple for the latest DEMO baselines
of EUROfusion, by using the new code system.

1.3 Structure and outline of this thesis

In the conceptual phase of DEMO, the toroidal field ripple in the vacuum induction field was
minimized by designing the geometry of the ferromagnetic inserts4. However, the computa-
tions carried out until now did not include the plasma response. This thesis continues these
computations, with the 3D modelling of the MHD equilibria of a DEMO tokamak. Thus, the
plasma response to the toroidal field ripple can be investigated. For the computations of this
work, a code system is developed, with the 3D MHD equilibrium solver PARVMEC as central
building block of the newly coupled code system. Three achievements of this code system are:

• the coupling of the versatile transport simulation code ASTRA to the 3D free boundary
solver PARVMEC for the computation of 3D ideal MHD equilibria,

• the creation of a parametric input generator to translate 3D coil systems into MAKEGRID
format for the computation of vacuum induction fields

• and the inclusion of ferromagnetic inserts, inside the vacuum vessel, in a coil model, for
the computation of their effect on the 3D vacuum induction field with MAKEGRID.

The developed code system is applied successfully for the computation of the plasma response
to the toroidal field ripple in two plasma scenarios. Both confirm the expected non-resonant
plasma response, shown in this thesis by comparison of the toroidal field ripple in the vacuum
induction field and the corrugation of the plasma on the Last Closed Flux Surface (LCFS),
as computed by PARVMEC. Furthermore, it is shown for the L-mode, that 3D free-boundary
simulations differ up to 26% in the amplitude of the flux surface corrugation, relative to the
vacuum approximation. This indicates the need for inherent 3D simulations.
The rest of this thesis is structured as follows. In chapters 2 and 3 the basic physical con-
siderations and employed numerical tools relevant to this thesis are introduced. Chapter 2
focuses on the physical background and chapter 3 on the algorithmic aspects of existing codes
used in the code system. Next, the baseline of the here presented work is described in chapter
4. The baseline consists of the plasma scenarios supplied from ASTRA transport simulations
and the geometry of the coil system. Chapter 5 explains in detail the coupling of the code
system. Thereby the newly developed codes PIGEN (PARVMEC Input GENerator) and
MIGEN (MAKEGRID Input GENerator) are presented. Chapter 6 describes the result of
the plasma response to the toroidal field ripple of L-mode and H-mode and the effect of fer-
romagnetic inserts, as computed by the developed code system. Finally, a conclusion and
outlook are given in chapter 7.

4Ferromagnetic inserts are volumes, inside the vacuum vessel wall, filled with ferromagnetic material, for the
reduction of the toroidal field ripple. They are described in detail in section 5.3.3.



2 Relevant physical background

2.1 Equilibrium in the ideal MHD picture

In this thesis the 3D flux surfaces are computed in a physical model called the static ideal
MHD model. The ideal MHD model is a fluid model, which is applied for the description of
fusion plasmas. Although it is a physical model resulting from a cascade of simplifications, it
is able to describe the equilibrium [4]. In the following this cascade is outlined, to enable a
classification of the contained physics in the results of this thesis. This outline is based on [4],
where all equations in this section can be found with further details.
First of all, a fully ionized plasma of a tokamak consists of electrons and ions of different
species. The starting point for capturing the physics is a statistical description of each species,
by the distribution function fα(~r,~v, t) of species α for the position ~r and the velocity ~v at a
given time t. The time evolution of this distribution function is given through a coupling of
the Boltzmann-equation

∂fα
∂t

+ ~v · ~∇rfα + 1
mα

Zαe( ~E + ~v × ~B) · ~∇vfα =
(
∂fα
∂t

)
c

(2.1)

to the Maxwell-equations

~∇× ~E = −∂
~B

∂t
(2.2a)

~∇× ~B = µ0~j + 1
c2
∂ ~E

∂t
(2.2b)

~∇ · ~E = σ

ε0
(2.2c)

~∇ · ~B = 0 (2.2d)

because the force term in the Boltzmann-eq. is given by the general Lorentz-force1. Eq. (2.1)
contains the elementary charge e, the atomic mass of the species mα and its atomic number
Zα. The current density ~j and the charge density σ in the Maxwell-eqs. (2.2) are related to
the distribution function by

~j =
∑
α

Zαe
∫
~vfαd

3v (2.3a)

σ =
∑
α

Zαe
∫
fαd

3v (2.3b)

Based on this set of coupled eqs., the following steps lead to the ideal MHD picture.
1A derivation of the general Boltzmann-eq. can be found in [7].
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1. Forming moments of eq. (2.1) for the two-fluid picture.
→ fα(~r,~v, t)⇒ {nα, ~uα, pα}(~r, t)
This is done by multiplying first the eq. (2.1) with powers of the velocity and then
integrating over the velocity space. For the derivation of the ideal MHD picture the
moments related to mass, momentum and energy are used (exponents 0,1,2). By this
integration the distribution function is translated into the so called two-fluid picture of
a hydrogenic plasma (Zi = −Ze = 1), consisting of eqs. for the densities nα, the fluid
velocities ~uα and the pressures pα. However, this set of eqs. is not closed. The closure is
achieved below, by approximation of the higher moments in the integrals based on the
assumption of collision dominated distribution functions.

2. Quasi-stationary approximation of Maxwell-eqs.

→ ~∇× ~B = µ0~j + 1
c2
∂ ~E
∂t
⇒ ~∇× ~B ≈ µ0~j

The displacement current ∂ ~E/∂t is neglected in this approximation. This limits the
phase velocity of electromagnetic waves, as well as the thermal velocities of electrons
and ions, to be small compared to the speed of light c.

3. Quasi-neutral approximation of the plasma.
→ ni ≈ ne = n

This approximation leads to again eliminating high frequencies and short wave lengths
in the contained phenomena. For ni ≈ ne to be a valid approximation, the considered
processes need to take place with frequencies below the plasma frequency, so that elec-
trons can eliminate local imbalances and the length scales need to be big, compared to
the Debye length2.

4. Neglecting electron mass me with respect to ion mass mi for the single fluid picture.
→ {n, ~ui, ~ue, pi, pe, Ti, Te} ⇒ {ρ,~v,~j, p, T}
The transition of a two-fluid picture of ions and electrons to a single-fluid picture is
accomplished by introducing the density ρ = min, the velocity ~v = ~ui, the current
density ~j = en(~ui − ~ue) and the pressure p = pi + pe = 2nT with the temperature
T = Ti = Te of a single fluid.

5. For the ideal MHD limit, electron and ion distributions are assumed to be collision dom-
inated.
The assumption of collision dominated electrons and ions leads to Maxwellian distri-
bution functions, for which the pressure tensor is isotropic. This pressure tensor is
contained in the eqs. besides the scalar pressure p, until the ideal MHD limit is applied.
By this assumption higher moments of eq. (2.1) can be approximated and subsequently
be neglected for the ideal MHD picture. Thereby the plasma is considered as perfect
conductor, giving rise to the name ’ideal’ MHD.

2The Debye length in plasma physics is the characteristic length for the shielding of the Coulomb potential
[8].
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The resulting eqs. for the ideal (single fluid) MHD picture are

∂ρ

∂t
+ ~∇ · (ρ~v) = 0 (2.4a)

ρ
d~v

dt
= ~j × ~B − ~∇p (2.4b)

d

dt

(
p

ργ

)
= 0 (2.4c)

~E + ~v × ~B = 0 (2.4d)

~∇× ~E = −∂
~B

∂t
(2.4e)

~∇× ~B = µ0~j (2.4f)
~∇ · ~B = 0 (2.4g)

with the convective derivative d
dt

= ∂
∂t

+ ~v · ~∇ and the adiabatic coefficient γ.
As mentioned in the beginning of this section, the computations of the 3D flux surfaces in this
thesis are performed in the static ideal MHD picture. This model is received from eqs. (2.4)
by neglecting flow ~v = 0 and time dependent contributions. As result the basic 3D equilibrium
eqs.

~j × ~B = ~∇p (2.5a)
~∇× ~B = µ0~j (2.5b)
~∇ · ~B = 0 (2.5c)

are obtained.

2.2 Flux surfaces and magnetic flux coordinates

A property of the static 3D equilibrium, described by eqs. (2.5), is, that the magnetic field ~B
and the current density ~j are on surfaces with constant pressure p. This can be readily seen
by forming the dot product of eq. (2.5a) with either of the vectors, leading to ~B · ~∇p = 0 and
~j · ~∇p = 0. These surfaces are called flux surfaces. The only mathematical solution for these
flux surfaces in 3D space are toroidal surfaces [9], from what follows that the structure of the
equilibrium is described by toroidal, nested flux surfaces. Approximately at the minor axis of
the tours (figure 1.3) these nested toroidal surfaces shrink to a single curve without volume.
This curve is called the magnetic axis. Besides the toroidal coordinate system {R,Z, φ}, which
is intuitively introduced in the introduction, some of the explanations in this work make use of
a coordinate system, which is known as magnetic coordinate system. This coordinate system
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is a local curvilinear coordinate system, based on coordinates related to flux surfaces. The
three coordinates are denoted by {ρ, θ, ζ}.
The first coordinate in the magnetic flux coordinates, ρ, is chosen be a label for the flux
surfaces. This means, that a flux surface needs to be uniquely identified by a value for ρ.
Potential choice for ρ is the confining pressure ρ = p. However, each quantity identifying
a flux surface can be used. As introduced in subsequent chapters, ρ will be identified by
functions of the toroidal flux Φ in this work. Φ is the magnetic flux through a toroidal cross
section Ator, introduced in figure 1.3, therefore Φ =

∫
Ator

~B ·d ~A. Analogous the poloidal flux χ
is defined by χ =

∫
Apol

~B · d ~A and could be used as radial coordinate. The second coordinate,
θ, is an angle-like coordinate for the poloidal direction. The values of θ are [0, 2π] for one
revolution around the minor axis of the torus. Analogous is the angle-like coordinate ζ for the
toroidal direction defined. A revolution around the major axis of the tours spans ζ-values of
[0, 2π]. They are called angle-like, because they do not necessarily coincide with geometrical
angles around the major and minor axes. Each transformation

θ̃ = θ + f(ρ, θ, ζ) (2.6)
ζ̃ = ζ + g(ρ, θ, ζ) (2.7)

with 2π-periodic function f and g give equally valid coordinates. A ζ-coordinate curve for
ρ = const., θ = const. is located on a flux surface and same is valid for θ-coordinate curve.
Therefore their covariant bases vectors

~eθ = ∂~r

∂θ
= √g(~∇ζ × ~∇ρ) (2.8)

~eζ = ∂~r

∂ζ
= √g(~∇ρ× ~∇θ) (2.9)

lie in a flux surface. They are related to the contravariant basis vector ~eρ = ~∇ρ by

~∇ρ = √g(~eθ × ~eζ) (2.10)

with the Jacobian √g = [~∇ρ · (~∇θ × ~∇ζ)]−1 [10].
Another flux surface quantity, which is relevant for this work (but not used as coordinate), is
the safety factor q. It is closely related to the average rotational transform angle

ῑ = 1
2π lim

n→∞

∑n
k=1 ιk
n

(2.11)

normalized to 2π, where ιk is the difference ∆θ in the position of a field line after the k-th
toroidal circulation (∆ζ = 2π). The q-profile q = q(ρ) is given by [10]

q(ρ) = 1
ῑ(ρ) (2.12)
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2.3 3D perturbations

After the introduction of flux surfaces in the ideal MHD equilibrium and magnetic flux coor-
dinates, this section picks up the motivation of this thesis to discuss the two major objectives
in more detail. The first objective is the development of a code system for the computa-
tion of flux surfaces under the influence of 3D perturbations in the ideal MHD equilibrium,
starting with profiles from turbulent transport simulations. 3D perturbations in general are
non-axisymmetric magnetic perturbations and must be considered when designing a fusion
power plant. The reason for this can be seen by considering flux surfaces. In tokamaks with
axisymmetry, the structure of nested flux surfaces is rigorously present, but without axisym-
metry some flux surfaces can expand to finite volume, as described below [10].
There are two types of flux surfaces: Rational and irrational flux surfaces. Irrational flux
surfaces are made of non-closing magnetic field lines and cover ergodically the whole surface.
Rational flux surfaces close themselves after a number of toroidal revolutions. Rational flux
surfaces show the ability to open so-called magnetic islands, if a perturbation aligns with the
magnetic field of the flux surface. In this case error fields, perpendicular to the flux surfaces,
are induced, which alternate sign around the poloidal circumference. These error fields detach
the magnetic field lines from the flux surface and twist them, additionally to the twist around
the magnetic axis in the center, around a new axis of the magnetic island [8].
Perturbations with such an alignment are called resonant magnetic perturbations. They pen-
etrate the magnetic surfaces and can cause the magnetic field lines to fill stochastic volumes,
as shown in figure 2.1. Flux surfaces are surfaces with constant pressure p (see section 2.1). If
now flux surfaces are radially extended to volumes, these volumes do not contain a pressure
gradient. Hence, these stochastic volumes allow enhanced radial transport out of the plasma
[4]. Furthermore, particles on nested flux surfaces around magnetic island are transported
parallel to magnetic field lines to regions more outside the plasma, as indicated in figure 2.1.
Particles leaving magnetic surfaces at this position of the island due to collisions are another
contribution to enhanced radial transport.
The second major objective of the motivation in section 1.2 is the computation of the plasma
response to the toroidal field ripple, as a 3D perturbation of the magnetic vacuum induction
field. Due to the finite number of toroidal field coils, the strength of the vacuum induction
field generated by them is denser inside a toroidal field coil and attenuated in between the
coils. Because of the regular placement of the coils, in the toroidal direction, a periodic ripple
in the toroidal field arises. For the investigations of the plasma response a measure for the
extent of the toroidal vacuum field ripple δ̃(R,Z) is introduced by

δ̃(R,Z) = maxφ[Bφ,vac(R,Z, φ)]−minφ[Bφ,vac(R,Z, φ)]
maxφ[Bφ,vac(R,Z, φ)] + minφ[Bφ,vac(R,Z, φ)] (2.13)

with maxφ and minφ over of the toroidal angle φ at a {R,Z} point. This measure is based on
the toroidal component of a magnetic vacuum induction field Bφ,vac, generated by the toroidal
field coils. This definition of δ̃(R,Z) is adopted from [11], because results of following chapters
are compared to [11].
Through the action of forces from the magnetic field to the plasma and the influence of the
plasma back to the magnetic field, a coupling of perturbations to the flux surfaces can occur.
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magnetic island

stochastic region

irrational flux surface

nested flux surfaces
parallel transport

Figure 2.1: Poincare plot of a poloidal cross section for a non-axisymmetric plasma with mag-
netic islands. Each point in the plot is a puncture of a traced magnetic field line
during the circulation around the major axis of the torus. Above the magnetic
island the field lines are detached from magnetic surfaces and form a stochastic
region. Furthermore, nested flux surfaces around a magnetic island allow particle
transport parallel to the magnetic field lines, what cause additional radial trans-
port. Figure from [8], supplemented with labels.

This coupling is described by the so-called plasma response. To investigate the influence of
the toroidal field ripple on the plasma, the plasma response is measured in this thesis by the
amplitude of the corrugation of flux surfaces δ(R,Z). The amplitude δ(R,Z) is defined by

δ(R,Z) = maxφ[ξ(R,Z, φ)]−minφ[ξ(R,Z, φ)] (2.14)

with the absolute value ξ of the corrugation vector ~ξ, which is explained in figure 2.2 and again
maxφ and minφ over the toroidal angle φ at a {R,Z} point. ξ(R,Z, φ) is positive if the flux
surfaces are displaced radially outwards and negative, if the displacement is directed inwards.
For the computation of δ(R,Z) the algorithm developed in [12] is used in this work.
An estimation, if a 3D perturbation is expected to couple resonant or non-resonant to a
flux surface, can be given by decompose the perturbation into poloidal and toroidal Fourier
harmonics, mper and nper. If the ratio mper/nper takes values of the q-profile, it can cause res-
onant perturbations. This can be seen by introducing an analogous quantity to the rotational
transform ῑper for the perturbation as

ῑper = λpol
λtor
⇒ qper = mper

nper
(2.15)

with the poloidal and toroidal wavelength λpol and λtor of the perturbation. For the toroidal
field ripple nper = 16 is expected in combination with a low number of poloidal harmonics
mper, because of the D-shaped cross section of the toroidal field coils, so qper < 1. In chapter 4
q-profiles of two plasma scenarios used this work are depicted, both with q(ρ) > 1. Therefore,
the toroidal field ripple of the toroidal field coils is not expected to be a resonant perturbation.



13 2.4 L-mode and H-mode
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R [m]

Z
[m

] ~ξ

3D flux surface
axisymmetric

Figure 2.2: On the left side an example of nested flux surfaces in a poloidal cross section is
shown. On the right side a zoomed detail is depicted, to visualize the corrugation
vector ~ξ for a single point on a flux surface. For the definition of ~ξ the 2D axisym-
metric and the 3D solutions of a flux surface are required. The vector is always
perpendicular to the axisymmetric flux surface at the considered point and points
radially outwards to the coordinate of the 3D solution of the same flux surface,
which can be displaced relative to the axisymmetric solution, depending on the
toroidal position φ. The absolute value of the corrugation vector is negative, if the
3D flux surfaces are displaced inwards. ~ξ is computed for several points on a 3D
grid.

2.4 L-mode and H-mode

A plasma scenario is a set of quantities and profiles, defining the state of the plasma. There
are several known plasma scenarios, with different characteristics. However, for this thesis
two of them are relevant, the L-mode (low-confinement mode) and H-mode (high-confinement
mode). Both are introduced in this section.
The L-mode can be viewed as starting point for reaching further plasma states. By heating
the D-T mixture it becomes ionized and is confined by the coil system. The kinetic profiles of
this mode fulfill the necessity, that pressure and temperatures are low at the plasma boundary
and increase towards the magnetic axis. In figure 2.3 the profiles for electron and ion densities,
ne(ρ) and ni(ρ), together with the electron and ion temperatures, Te(ρ) and Ti(ρ), are shown
for an L-mode. An example for the pressure profile of an L-mode can be seen in section 4.1.1.
The second relevant mode for this thesis is the H-mode. This plasma state is reached from
the L-mode by the so-called L-H transition. This transition is achieved by exceeding a certain
threshold of heating power PLH , which can be determined by the scaling law

PLH,scale = 0.049 · n̄0.72
e ·B0.8

0 · S0.94 (2.16)
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Figure 2.3: Density and temperature profiles, n(ρ) and T (ρ), for electrons and ions as function
of the used flux surface label ρ =

√
Φ/Φedge (Φ: toroidal magnetic flux). ρ = 0 is

the magnetic axis and ρ = 1 the plasma boundary. The plotted data corresponds
to the L-mode and H-mode, which are investigated in this thesis, as described in
section 4.1.

with the line averaged3 electron density n̄e in 1020m−3, the toroidal magnetic field on the
minor axis B0 in T and plasma surface area S in m2. PLH,scale is then given in MW [13]4.
A characteristic feature of the H-mode is depicted in figure 2.3. In comparison to the L-mode
the gradients of the densities and the temperatures show a steep increase near the plasma
boundary. These steep gradients translate to the pressure profile, as described in section
4.1.2. They are a result of a so-called Edge-Transport-Barrier (ETB). This ETB is a layer
of flux surfaces near the plasma edge, suppressing turbulent transport. The ETB is a result
of a ~E × ~B shear flow induced by a radial electric field Er, where ~E × ~B shear flow is a drift
movement of the particles in a direction perpendicular to the electric and magnetic field. The
electric field is a radial electric field Er, induced by a ion temperature gradient ~∇Ti in the
plasma edge [13].
The suppression of turbulent transport improves the energy confinement and therefore in-
creases τE. Thus, H-modes are one of the most promising candidates for electricity production
in fusion power plants [14, 15].
Although the H-mode and the L-H transition are experimentally well investigated and mea-
sured, the physical modelling for calculations and simulations are an active area of research. A
current issue of this research, is the transfer of energy into so-called zonal flows as a potential
trigger for the L-H transition. In combination with a sufficient large ion temperature gradient
~∇Ti, driving a ion heat flux across the plasma boundary, the radial electric field Er could be
generated [13].

3The so-called line average is the average over the radial coordinate, here ρ.
4This scaling law is only valid for the high electron density branch. In general the dependence of PLH is
non-monotonic in the electron density [13].
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3.1 ASTRA

3.1.1 Building transport simulations using TGLF

ASTRA is a build system for the creation of code to solve transport problems. It enables the
flexible implementation of ongoing progress in understanding transport phenomena achieved
in theory and experiments. The flexibility to adjust the code for a specific transport analysis
is given by a modular setup. These modules are often coupled, because the same physical
quantity appears in many modules. The approach of a build systems meets the requirement
of maintainability of these coupled modules [16]. Figure 3.1 depicts the basic workflow of the
creation of a transport simulation with ASTRA. In this and the following section the focus
is on the relevant aspects of the underlying provision study [14] of this thesis. This provision
study provides output files of ASTRA simulations, which are then further processed to inves-
tigate the plasma response to the toroidal field ripple, as described in section 5.

User specifies the trans-
port problem in ASTRA

ASTRA language, ex-
pressions and modules

interpreter builds source
code for the specific
transport problem

Source code is compiled Fortran and C compilers

Using compiled binary
to run the simulation

Figure 3.1: The ASTRA environment provides a language suitable for transport problems, ex-
pressions and modules for the user to specify the transport problem. A simulation
can contain several blocks for different tasks, which are connected through the
ASTRA environment. Chart is created following [16].

ASTRA simulations have in common, that they solve a system of 1D diffusion equations, which
is presented in [16]. These are, for instance, electron and ion densities and temperatures1, a 2D

1Other plasma species can be included.
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axisymmetric equilibrium and other user defined modules, as explained in figure 3.1. The 2D
equilibrium is used to close the diffusion equation system, even though the concrete solver is
implemented as a module [16]. The relevant solver for this thesis is SPIDER, see section 3.1.2.
In the above mentioned provision study the diffusion coefficients of the equation system solved
in ASTRA contain neoclassical and turbulent transport contributions. The applied turbulent
transport model is the trapped gyro-Landau-fluid (TGLF) model [17]. For the completeness of
the existing codes a brief introduction to TGLF is presented. For the details of the underlying
transport simulations of the thesis, the reader is referred to the provision study [14].
The intention of TGLF is the accurate description of linear drift wave2 eigenmodes in a
computationally efficient manner. Therefore a GLF equation system, which basically consists
of gyroaveraged velocity and momentum equations, is used. These equations include passing
and trapped particles [17]. Passing particles circulate around the magnetic axis along the field
lines, while on the other hand trapped particles move in so called banana orbits, because they
are reflected by a magnetic mirror passing from low field to high field side [8]. The inclusion
of both types of particles allows the modelling of electron temperature gradient driven modes
with low wave numbers. These are often the most unstable modes in the outer 1/3 of the
plasma. The proper modelling of this region is crucial, for the transport prediction out of the
plasma [17].
The TGLF equation set is made up of six moment equations of the linearized electrostatic
gyrokinetic equation3. These six moments are the density, parallel velocity, parallel pressure,
total pressure, parallel energy flux and total energy flux. The total velocity together with
parallel velocity has the advantage of a simple scaling with the trapped particle fraction, if
they are defined by the integration over the velocity space of the trapped particles. The system
of the six moment equations is closed, by expressing higher velocity moments, occuring inside
the moment equations, by the above mentioned lower order moments [17].
Computational extensive gyrokinetic simulations show, that turbulence contains a non-linear
saturation behaviour. Thus, quasilinear weights are implemented in saturation models in the
substantially faster TGLF code. The first saturation model SAT0 is improved by take mode
coupling into account [18]. The resulting model SAT1 is extended by including geometric
factors to account for Shafranov shift and elongation [19]. This version of TGLF is referred to
as TGLF-SAT1geo and is the version which is applied in the underlying ASTRA simulations
of this thesis, to compute the turbulent transport coefficients.

3.1.2 Equilibrium solver SPIDER

As explained in the previous section, ASTRA solves a set of 1D diffusion equations to compute
kinetic profiles. This set of equations is under-determined and for the closure of the system
a 2D axisymmetric equilibrium is solved simultaneously and self consistent with the diffusion
system. Both, transport and the equilibrium quantities, do vary with the ’in-ASTRA’-time
of the simulation [16]. The main components of the provision study [14] and the interplay
between transport and equilibrium solver are shown in figure 3.2.

2Drift waves are pressure gradient driven waves with a phase velocity in comparable magnitude to the
diamagnetic drift velocity [8].

3The moments are gained in a similar way to the moments of the kinetic equations used for the ideal MHD
model in section 2.1. The derivation of them is described in [17].
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Transport
turbulent transport

coefficients by calling

TGLF and neoclassical

transport coefficients

Equilibrium
2D code SPIDER solv-

ing fixed boundary

Grad-Shafranov-eq.

Parameters
R0B0, NE , NB , {ri, zi}

p, j‖

ρB, ρj(~r), I, V
′, G1, G2, G3, q

Input to the equilibrium module Output from the equilibrium module

R0B0 boundary value of I ρB boundary value of ρ

NB boundary-grid size ρj(~r) shape of every flux
surface

{ri, zi} boundary shape I(ρj) poloidal current

NE ρ-grid size V ′(ρj) volume derivative

ρj ρ-grid G1(ρj)




metric characteristicsp(ρj) pressure profile G2(ρj)

j‖(ρj) current density profile G3(ρj)

q(ρj) q-profile

Figure 3.2: The transport module solves the diffusion and transport equations given in [16] in
user defined time steps in the so called ’in-ASTRA’-time. The necessary transport
coefficients for turbulent transport are obtained by calling TGLF code after a
specified number of time steps and the neoclassical transport coefficients are given
by formulas according to [14]. After another specified number of time steps the
equilibrium module is called for the closure of the ASTRA transport model. This
figure is created according to [16] and [14].

The above depicted coupling of TGLF transport system and equilibrium solver SPIDER was
successfully used in [20] to reproduce a plasma discharge in ASDEX Upgrade and used again in
the provision study [14] for this thesis. Thereby implemented equilibrium solver SPIDER can
be operated in several modes. A overview of the capabilities of SPIDER is given in [21]. In the
provision study [14] SPIDER is used as a fixed-boundary equilibrium solver with a static ρ-grid.
In this mode SPIDER takes a prescribed plasma boundary and computes the inner flux surfaces
as solution of the Grad-Shafranov-eq.4. To obtain a well-defined MHD problem, additional
profiles need to be prescribed. In the provision study [14] the pressure profile and the q-profile
are prescribed in the simulations and used in SPIDER when calling the equilibrium module,
together with the computed current density profile and further parameters, as depicted in
figure 3.2 for a general coupling of the equilibrium module.

4Eq.(2.5) can be transformed to the Grad-Shafranov-eq. by assuming axisymmetry, as shown in [4].
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3.2 MAKEGRID

This code is used to compute static magnetic fields of a given set of coils in vacuum5. A coil
is modelled by straight filaments in Cartesian coordinates, each representing an infinitely thin
conductor. Complex coil geometries can be approximated by linking numerous filaments. Also
spatially extended coils can be represented by several windings of line conductors next to each
other. Thus the magnetic field of a coil ~Bcoil is given by the fields of single conductor ~Bcond

through

~Bcoil =
m∑
i=1

~Bcond
i (3.1a)

~Bcond =
L∑
j=1

~Bfil
i,j (3.1b)

~Bfil
i,j =µ0

4πI
cond
i

∫ l

0

k̂j × (~r − ~rj(l))
|~r − ~rj(l)|3

|~rj+1 − ~rj| (3.1c)

with the field of a single straight filament ~Bfil
i,j by the Biot-Savart law.

k̂j = (~rj+1 − ~rj)/ |~rj+1 − ~rj|

is the unit vector from one filament to the next. MAKEGRID outputs the resulting magnetic
field on a given grid in cylindrical coordinates {R,Z, φ} [12].

3.3 DESCUR

The DESCUR code6 uses a steepest decent algorithm to find an optimized Fourier represen-
tation of a given curve on a surface inside R3 with a condensed spectrum of the poloidal mode
number m. This improves the radial mesh convergence in the calculation of MHD equilibria
[23].

A closed curve on a flux surface at fixed toroidal angle φ0 parameterized by the poloidal angle
θ is given by its Fourier series as

x =
∑

xmn cos(mθ + nφ0) (3.2a)
y =

∑
ymn sin(mθ + nφ0) (3.2b)

with local Cartesian coordinates x = R − R0 and y = Z − Z0 where R0 and Z0 define the
minor axis of the cylindrical coordinate system {R, φ, Z}. This representation of the curve is

5Source code can be found in [22].
6Source code can be found in [22].
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not unique, because the poloidal angle as monotonic increasing function of the arc length can
be compressed and stretched what leads to under determination of eq. (3.2). This degree of
freedom is used by defining a measure of the spectral extent and add the additional constraint
to minimize it. With the definition of a power spectrum of the curve Sp(m) in eq. (3.3a) the
applied quantified measure of the spectral extent is given by the q-moment according to eq.
(3.3b).

Sp(m) =mp
∑
n

(
x2
mn + y2

mn

)
(3.3a)

M(p, q) =
∑
m=1m

qSp(m)∑
m=1 Sp(m) for q > 0 (3.3b)

The minimization of eq. (3.3b) is obtained by variation with the constraint for the curve not
to depart the flux surface. This constraint can be expressed with a function I(θ, φ) leading to
δM = 0↔ I(θ, φ) = 0, what needs to be solved numerically [23].
In practice the original curve is approximated by its truncated Fourier series. Thus a least
square fit through minimization of the curve energy Wc, here defined by the mean square dif-
ference between prescribed curve points {xi, yi} and the Fourier series evaluated at parametric
points θi, according to

Wc =1
2
∑
i

{
[x(θi)− xi]2 + [y(θi)− yi]2

}
(3.4a)

WT =Wc + εM (3.4b)

is performed. The constrain of minimizing the spectral extent M is added in (3.4b) with a
weighting factor ε to balance the contributions of reducing the spectral extent and the fitting
to the curve. Finding the minimum of (3.4b) needs to fulfill the requirement I = 0 from
above. This problem is numerically solved by applying a so-called penalty method to solve
constrained optimization problems. In this method a constrained optimization problem is
expressed as iteration of unconstrained optimizations [24]. For the iteration scheme a steepest
decent algorithm is applied along the gradient −~∇WT [23].
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3.4 PARVMEC (NEMEC)

PARVMEC is a parallelized version of the NEMEC code and uses the same physical algorithm
to find an equilibrium state of the plasma by minimizing its energy [12]. Therefore the names
NEMEC7 and PARVMEC are used interchangeably in this work by always referring to the
parallelized version PARVMEC. In this section the physical context is described and figure 3.3
shows the basic structure of the implementation. Only those parts of the code are described,
which are relevant to this work8.

NEMEC finds a solution of the static equilibrium equations of the ideal MHD picture given
by

~F = −~j × ~B + ~∇p (3.5a)
~∇× ~B = µ0~j (3.5b)
~∇ · ~B = 0 (3.5c)

with the residual force ~F = 0 in the equilibrium state. The static equilibrium is obtained from
the full single fluid ideal MHD equations by neglecting flow and time dependent quantities
[25], see section 2.1. One of the coordinate systems NEMEC uses is the flux coordinate system
given by ~α = {ρ, θ∗, ζ} as introduced in section 2.2, with the straight field line angle

θ∗ = θ + λ (3.6)

and the parameter λ to straighten the field lines in a flux surface9. The contravariant repre-
sentation of the magnetic field in this system is

~B = ~∇ζ × ~∇χ+ ~∇Φ× ~∇θ∗

= Bθ~eθ +Bζ~eζ
(3.7)

with the poloidal flux 2πχ and the toroidal flux 2πΦ. This representation already includes the
restrictions ~B · ~∇p = 0 and ~∇ · ~B = 0 from the ideal MHD equations [25].
Considering (3.7) in (3.5a) it can be seen, that there are only two independent components
of the vector ~F . This linear dependence is used to define a toroidal coordinate system ~x =
{R, λ, Z}, where the standard toroidal angle φ is replaced by λ. This third degree of freedom
is identified with the straight field line parameter λ and is used to improve convergence. The
R- and Z- component are needed to evaluate the independent components of the force balance
~F = 0, as described in the following [25].
7As described in figure 5.1 NEMEC consists of the codes NESTOR and VMEC.
8Source code can be found in [22].
9This is a aimed choice for λ = f(ρ, θ, ζ) in eq. (2.6) to transform the coordinate system in a way, that field
lines are described by eqs. for straight lines in these coordinates. A derivation can be found in [10].
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Fixed-boundary.

The energy functional for a fixed-boundary, that is varied, is the sum of magnetic and thermal
plasma energy

W =
∫ (

B2

2µ0
+ p

γ − 1

)
|√g| d3α (3.8)

with the adiabatic coefficient γ. The plasma is going to evolve to the minimum energy state,
which is found by assuming adiabatic closure of the plasma while moving the fluid to minimize
eq. (3.8). Thereby all elements of the fluid are considered isentropic [9].
Starting again with a standard toroidal coordinate system ~x = {x1, x2, x3} = {R, φ, Z} the
variation is mathematically performed by assuming a time parameter in the coordinates of
the flux surfaces ~x = {R(t), φ(t), Z(t)} and also in the straight field line parameter λ = λ(t).
When this time parameter is varied the change in the plasma energy is given by

Ẇ = −
∫
Fiẋid

3α−
∫
Fλλ̇d

3α−
∫
ρ=1
|√g| ∂ρ

∂xi

(
B2

2µ0
+ p

)
ẋidθdζ

= 0 (in equilibrium)
(3.9)

with implied Einstein summation over roman indices and forces given by

Fi =− ∂

∂αj

[
|√g| ∂αj

∂xi

(
B2

2µ0
+ p

)]
+ 1
µ0
|√g| ~∇ · [(Λi

~B · ~∇xi) ~B]

+ δi1

∣∣∣√g∣∣∣
R

 B2

2µ0
+ p− R2( ~B · ~∇φ)2

µ0

 , Λ1 = Λ3 = 1,Λ2 = R2
(3.10a)

Fλ =Φ′
µ0

(
∂Bζ

∂θ
− ∂Bθ

∂ζ

)
(3.10b)

The last term of eq. (3.9) on the right hand side is the energy change due to a moving
boundary and can therefore be neglected for fixed boundaries. It is now chosen to identify the
toroidal angle φ with the magnetic coordinate ζ, thus φ = ζ. Consequently the corresponding
Jacobian √g for the transition from magnetic coordinates ~α = {ρ, θ, ζ} to toroidal coordinates
~x = {R, φ = ζ, Z} is reduced to two dimensions as

√
g =RG (3.11a)

G =∂R
∂θ

∂Z

∂ρ
− ∂R

∂ρ

∂Z

∂θ
(3.11b)

The force component Fφ can now be omitted, because with φ = ζ the two independent force
components of eq. (3.5a) are linear combinations of FR and FZ in eq. (3.10). Therefore
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the equivalence of solving the static equilibrium equations (3.5) for a fixed-boundary and the
variation formulation with solution FR = FZ = 0 can be seen [25].
The equation Fλ = 0 for solving eq. (3.9) is dependent on FR = FZ = 0, since there are only
two independent MHD force components in eq. (3.5a). This under determination is resolved
by introducing a constraint to minimize the spectral extent, which is described in two steps.
First, λ is now used as a coordinate in the former mentioned coordinate system ~x = {R, λ, Z}.
In these coordinates the force equations are given by

FR = ∂

∂ρ

(
∂Z

∂θ
P

)
− ∂

∂θ

(
∂Z

∂ρ
P

)
+ 1
µ0

(
∂

∂θ
(BθbR) + ∂

∂ζ
(BζbR)

)

+G

(
P

R
− (RBζ)2

µ0

) (3.12a)

FZ =− ∂

∂ρ

(
∂R

∂θ
P

)
+ ∂

∂θ

(
∂R

∂ρ
P

)
+ 1
µ0

(
∂

∂θ
(BθbZ) + ∂

∂ζ
(BζbZ)

)
(3.12b)

Fλ =Φ′
µ0

(
∂Bζ

∂θ
− ∂Bθ

∂ζ

)
(3.12c)

with P = R(p + |B|2 /2µ0) and bi = √g ~B~∇xi, according to [25]. Eq. (3.12c) is adopted
unchanged from eq. (3.10b) for reference in figure 3.3.

Second, the equations FR = Fλ = FZ = 0 are not solved directly because of numerical reasons
[25]. A steepest descent algorithm is applied, which utilises the Fourier representations for the
coordinates ~x = {R, λ, Z} by

xj =
∑
m,n

Xmn
j (ρ) exp[i(mθ + nζ)] (3.13)

with the poloidal and toroidal angles θ and ζ. Using this representation for ~x in eq. (3.9)
leads to [12]

Ẇ =−
∑
m,n

∫
(Fmn

j )∗Ẋmn
j dV with (3.14a)

Fmn
j = 1

V ′

∫ ∫
Fj exp[−i(mθ + nζ)]dθdζ (3.14b)

In [25] it is shown for a fixed-boundary, that the path of the steepest descent is described by

Ẋmn
j = Fmn

j (3.15a)

Ẇ = −
∑
m,n,j

∫ ∣∣∣Fmn
j

∣∣∣2 dV (3.15b)
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with the associated energy reduction in eq. (3.15b), where Ẇ = 0 is equivalent to Fmn
j = 0

for all m,n, j.
Now the additional constraint to minimize the spectral extent of Rmn

j and Zmn
j is applied, by

means of minimizing the measure M like in DESCUR, section 3.3. The minimization can be
expressed as additional constraint forces FR,con and FZ,con. When these forces are added and
Fλ,con = 0 the equations

Fmn
j = (Fj + Fj,con)mn for j = (R, λ, Z)10 (3.16)

are now independent and define by means of (3.6) a unique poloidal angle [26].
For the steepest decent algorithm NEMEC solves eq. (3.15a) in an iterative manner according
to eq. (3.22) in figure 3.3. To improve the convergence of the solution the parabolic differen-
tial equations (3.15a) are translated to hyperbolic equations, using a second-order Richardson
scheme introducing a critical damping in the iteration [25].

A further limitation that needs to be imposed, while minimizing the energy, is that two flux
surface quantities are prescribed. Otherwise one would obtain a state with ~B = 0 and p = 0,
which is the trivial solution for an equilibrium state [9]. NEMEC prescribes the pressure
profile, which ensures mass conservation on each flux surface. Additionally the profiles of the
radial derivative (w.r.t to ρ) of the poloidal flux χ′ and the radial derivative of the toroidal
flux Φ′ are prescribed [25]. These magnetic profiles are entered externally by specifying the
radial derivative of the toroidal plasma current on each flux surface and total plasma current
Ipl, as well as the toroidal magnetic flux on the plasma edge Φedge

11.

Free-boundary. Use of NESTOR.

NEMEC can also perform free-boundary calculations, when the plasma is considered to be in a
vacuum with a magnetic field ~Bvac which is contained inside a conducting wall. Therefore two
constraints for the plasma boundary need to be fulfilled. These are the pressure continuity
B2/2µ0 + p = B2

vac/2µ0 and the Neumann constraint ~B · ~npl = 0, with the plasma surface
normal vector ~npl. A free-boundary equilibrium is computed by a comparable approach to
the fixed-boundary described above by including the constraints in the energy functional. Eq.
(3.8) becomes then

W = Wpl −Wvac =
∫
plasma

(
B2

2µ0
+ p

)
|√g| d3α−

∫
vacuum

B2
vac

2µ0
|√g| d3α (3.17)

with the magnetic vacuum field expressed by a scalar magnetic potential ~Bvac = ~∇ν̃ [25]. The
same variation as for the fixed-boundary case gives now

10In the implementation the computation of the total MHD and constraint force is performed inside the Fourier
transformation and uses a different summation scheme, based on derivative terms [25] [22].

11For NEMEC it would also be possible to prescribe the q-profile instead of the toroidal current profile, but the
baseline ASTRA simulation [14] prescribed the q-profile and therefore reaching the same q-profile, which
is a topological invariant in the absence of time evolution, is used as a consistency check in this work [9].
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Ẇ =−
∫
Fiẋid

3α + 1
µ0

∫
vacuum

˙̃νFν̃d3x

−
∫
ρ=1

|√g| ∂ρ
∂xi

 B2

2µ0
+ p−

∣∣∣~∇ν̃∣∣∣2
2µ0



ρ=1

ẋidθdζ

− 1
µ0

(∫
ρ=1

˙̃ν ~Bvac · d~Sρ −
∫
wall

˙̃ν ~Bvac · d~S
)

(3.18)

The second line represents the pressure jump at the plasma edge and must vanish because of
the constraint of pressure continuity. The third line contains surface integrals with the terms
~Bvac · d~S, which also need to vanish because of the Neumann constraint. Thus the constraints
are fulfilled and an additional force is

Fν̃ = −~∇ · ~Bvac (3.19)

The corresponding path of the steepest decent for this force, in analogy to the fixed-boundary
case, is ˙̃ν = Fν̃ . The other forces Fi with i = (R, λ, Z) are given in eq. (3.12), where at
the boundary the values for the Fourier amplitudes {Rmn

b , Zmn
b } are now not prescribed, but

Pb = Rb(|Bvac,b|2 /2µ0), with the vacuum induction field at the plasma boundary ~Bvac,b is
applied [25, 27].
Instead of using a steepest decent method for ν̃ in NEMEC, the vacuum induction field is
computed with the NESTOR code. This code uses a similar representation of the vacuum
field to ~Bvac = ~∇ν̃, but the field produced by external coils and plasma currents, ~B0, is
separated to

~Bvac = ~B0 + ~∇ν (3.20)

The field ~B0 is kept constant during an equilibrium computation and the scalar potential
needs to satisfy the Laplace equation ∆ν = 0. Furthermore the normal derivative of the
scalar potential has to fulfill ∂ν/∂n = − ~B0 · ~npl at the plasma boundary, with again the
plasma surface normal vector ~npl. Therefore an integral equation for ν, using Greens third
identity, can be derived as

ν(~x) + 1
2π

∫
dΣ′pl

∂G(~x, ~x′)
∂n′

ν(~x′) = 1
2π

∫
dΣ′plG(~x, ~x′)∂ν(~x′)

∂n′
(3.21)

with points ~x and ~x′ on the plasma boundary Σpl and the Green’s function G(~x, ~x′) =
1/
∣∣∣~x− ~x′

∣∣∣. This integral equation is solved by NESTOR in Fourier space [27].
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~x: toroidal coordinate system
~x = {x1, x2, x3} = {R, λ, Z}

Fρ: radial force component in magnetic
coordinates

Xmn
jb : boundary Fourier coefficient for Xj

~B0: coil field

ns: array of radial grid values

ftol: array of force tolerance values

ν(ρ): monotonic function (ν(1) = 1, ν(0) = 0)

b: critical damping factor from second-
order Richardson scheme

initial state:
~B0, p(ρ), Ipl(ρ), ψtor(ρ = 1), Xmn

jb

set next (or first) values of ns, ftol

calculate initial magnetic profiles, so
that 〈√gFρ〉 = 0 at t = 0 [25]

initialize Fourier coefficients:

Xmn
j (ρ, t = 0) =

{
ν(ρ)Xmn

jb m > 0
X0n
jb m = 0

for j = 1, 3 and Xmn
2 = λmn = 0 [25] and

Ẋmn
j (ρ, t = 0) = 0 [22]

fixed-boundary?
Xmn
j (ρ = 1, t) = Xmn

jb for j = 1, 3
at all times t, use Xmn

2 = λmn

to account for rotation of ~B [25]

calculate ~F = {FR, Fλ, FZ} in real space
magnetic coordinates {ρ, θ, ζ} and transform
to Fourier space according to eq. (3.12) and
(3.16) [25, 22]. For free-boundary vacuum
induction field ~Bvac,b at plasma boundary
needs to be computed by NESTOR [27].

∑
m,n

∫ ∣∣Fmnj

∣∣2 dV
< ftol for

j = {R, λ, Z}?

reached last ns,
ftol values?

use force vector ~Fmn of Fourier com-
ponents for a steepest decent iteration

~̇Xn+1 = ~̇Xn(1− |bn|) + ∆tn ~Fmn

~Xn+1 = ~Xn + ∆tn ~̇Xn+1

(3.22)

where ~X is a vector of Fourier com-
ponents of ~x and bn a approx-
imated critical damping factor

bn = 1 −
∣∣∣~Fmn(n)

∣∣∣2 / ∣∣∣~Fmn(n− 1)
∣∣∣2 [26].

3D equilibrium
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no

no
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Figure 3.3: Visualization of the basic NEMEC energy minimization algorithm used for this
work with aid of [25] [26] [27] [22]. The implemented algorithm deviates in details
in favour of improved numerical methods.





4 DEMO baseline scenarios and coil
system

4.1 Plasma scenarios supplied by ASTRA simulations

4.1.1 L-mode

The plasma scenarios in this thesis are provided by transport simulations executed within the
scope of [14], where the TGLF model for the transport coefficients according to section 3.1.1
and the 2D equilibrium solver SPIDER, as explained in section 3.1.2 are coupled in ASTRA
simulations. The engineering parameters given in table 4.1 are part of the input for these
ASTRA simulations, as explained in figure 3.2. The transport simulations of [14] represent
the latest physics scenarios and are referred in this thesis as provision study.

Major radius R0 9 m

Separatrix elongation κsep 1.77

Separatrix triangularity δsep 0.39

Plasma current Ipl 17.75 MA

On-axis toroidal induction field B0 5.85 T

Truncated separatrix safety factor qsep 3.96

Greenwald density nGW 7.2 · 1019 m3

Plasma volume V ≈ 2635 m3

Helium concentration cHe 8 %

Target fusion power Pα + Pn 2 GW

Target pulse time 7200 s

Available auxiliary heating power Paux 130 MW

Table 4.1: Engineering parameters of EU-DEMO 2018 baseline used as input parameters in
the ASTRA simulations of [14]. These ASTRA simulations provide the L-mode
and H-mode scenarios for this thesis and therefore the results presented are related
to the same engineering parameters. Some quantities refer to the separatrix, which
is a curve at the plasma boundary. The separatrix is the curve, which separates
confined and unconfined field lines. It is marked in figure 4.1 (b).
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In [14] the feasibility of the L-H Transition in a purely Electron Cyclotron Resonant Heated
(ECRH) DEMO tokamak is investigated. Therefore, the L-mode scenario for this thesis is
heated by 50 MW ECRH. Considering the time dependent current in the central solenoid
inducing the plasma current, the L-mode is located in a state of constant plasma current
after the ramp up phase, what is called the flat top. An electron density at the boundary
of 2 · 1019 m−3 is used as further input parameter for the L-mode simulation. The impurities
of the D-T-plasma are assumed to consist of 8 % helium of the 2018 baseline, together with
40 ppm tungsten. In [14] the boundary condition Te(ρ = 1) = Ti(ρ = 1) = Te,sep is imposed
for the electron and ion temperatures at the separatrix, where Te,sep is computed by a 2-
point-model. The resulting 2D equilibrium of SPIDER has 71 radial grid points and the
’in-ASTRA’-time is incremented in steps of 5 ms. TGLF is called every 25 ms, to recompute
the turbulent transport coefficients [14].
The physical quantities of the L-mode scenario, used in NEMEC to compute the 3D nested
flux surfaces, are the pressure profile p(ρ), the plasma current profile Ipl(ρ), the total toroidal
flux Φedge, the shape of plasma boundary and the position of the magnetic axis. The profiles
are expressed as a function of the square root of the normalized toroidal flux ρ =

√
Φ/Φedge.

Together with the prescribed 2D axisymmetric boundary of the plasma, supplemented with
the inner flux surfaces computed by SPIDER and the position of the magnetic axis, they are
depicted in figure 4.1. For a fixed-boundary simulation in NEMEC the {R,Z} coordinates of
the axis are taken as initial values and can change while evolving to minimum energy state.
The same is valid for the plasma boundary in a free-boundary NEMEC simulation.
The ASTRA output file does not contain the pressure and plasma current directly. Hence,
they are computed by

p =neTe +
∑
i

niTi + pfast (4.1a)

Ipl = 1
2πR0

∫ ρ

0
V ′jtordρ (4.1b)

according to [16]. The summation over the ions for the pressure profile includes the thermal
contribution of impurities helium and tungsten. Furthermore the pressure profile contains
besides the density and temperature of electrons and ions the fast-ion pressure pfast. This
pressure contribution arises from non-thermal ions and is substantial in the core region. The
plasma current profile needs to be integrated over the radial derivative (w.r.t to ρ) of the
volume inside a flux surface V ′ and the toroidal current density jtor. As described in section
3.4, NEMEC does not change the pressure and plasma current profile and considers them as
prescribed. The total toroidal flux Φedge is also a conserved quantity in NEMEC simulations,
but is not directly available in ASTRA output files. The computation of the value of Φedge

for the coupling of ASTRA to NEMEC is described in section 5.2. For the L-mode a value of
Φedge = 272 Wb is computed in this work.
In figure 4.1 (a) it is shown, that the value for the plasma current Ipl(ρ = 1) = 20.97 MA
is above the engineering value of EU-DEMO 2018 baseline in table 4.1. This is because the
q-profile and not the plasma current is prescribed in the ASTRA simulations in the scope of
[14]. The current density inside the plasma is computed, to solve the Grad-Shafranov-eq., as
explained in section 3.1.2.



29 4.1 Plasma scenarios supplied by ASTRA simulations

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

0

5

10

15

20

ρ

p
[k
P
a]

I p
l
[M

A
]

p
Ipl

(a) L-mode profiles

6 8 10 12

−4

−2

0

2

4

separatrix

R [m]

Z
[m

]

(b) L-mode flux surfaces

Figure 4.1: (a) ASTRA profiles of the L-mode according to eq. (4.1) with respect to radial grid
variable ρ, computed in ASTRA transport simulations in the scope of [14]. These
are preprocessed as described in section 5.2 into an input format for NEMEC
and kept constant during the scope of this work for L-mode simulations. (b)
Prescribed plasma boundary according to EU-DEMO 2018 baseline applied in
ASTRA simulations with inner flux surfaces computed by SPIDER in the context
of [14]. The magnetic axis and the boundary serve as initial values for NEMEC
simulations and can vary within this work.

4.1.2 H-mode

The developed ASTRA simulation code of [14] is used externally to this work to supply a
DEMO H-mode scenario. Thereby a comparable procedure as for the L-mode in the previous
section is used. The H-mode is modeled by including a characteristic H-mode pedestal in
the prescribed pressure profile, according to [28]. It is combined with a heating power of
50 MW ECRH and an electron density in the pedestal top of nped = 6 · 1019 m−3. For the
impurities 8 % helium and 40 ppm tungsten, proportional to the electron density, are assumed.
In combination with the engineering parameters in table 4.1, a self consistent plasma scenario
is computed in ASTRA simulations and the results are provided for this thesis. These ASTRA
simulations are carried out in the context of [14], as for the L-mode.
Since both plasma scenarios are processed in this work with the same code system the relevant
quantities for NEMEC are again the pressure profile p(ρ), the plasma current profile Ipl(ρ),
the total toroidal flux Φedge, the geometry of the plasma boundary and the position of the
magnetic axis. The pressure and the plasma current profile are computed according to eq.
(4.1) and depicted together with the plasma boundary and magnetic axis in figure 4.2. As
for the L-mode the computation of the total toroidal flux Φedge is described in section 5.2 and
gives for the H-mode a value of Φedge = 271 Wb.
One can observe in figure 4.2 (a) that the plasma current exceeds the value from the EU-
DEMO baseline 2018 in table 4.1 with a value for the H-mode of Ipl(ρ = 1) = 21.46 MA. The
reason is the same as for the L-mode, that the q-profile is prescribed and the plasma current
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Figure 4.2: (a) H-mode profiles computed with ASTRA simulations with respect to radial
grid variable ρ. The ASTRA simulation use the same procedure as the L-mode
simulation and therefore the profiles are given by eq. (4.1) . The significant
difference between the H-mode and the L-mode is visualized by comparison to the
dashed pressure profile of the L-mode. A steep rise of the pressure profile near the
edge at ρ = 1 is a result of a transport barrier, see section 2.4. These profiles are
prescribed in following H-mode NEMEC simulations during the scope of this work.
(b) Prescribed plasma boundary according to EU-DEMO 2018 baseline applied in
ASTRA simulations with inner flux surfaces computed by SPIDER. The magnetic
axis is shifted radially outwards by 0.19 m compared to the L-mode due to the
changed pressure profile.

is computed to solve the Grad-Shafranov-eq. in SPIDER.
As described in section 2.4 the H-mode scenario is seen as the operational state for DEMO
due to the high energy confinement resulting from the transport barrier. The presented H-
mode scenario is expected to achieve 600 MW of fusion power, what is below the stated value
of 2 GW of the engineering parameters. The improvements are ongoing while this thesis is
written.

4.2 Coil system and ferromagnetic inserts

In figure 4.3 the coil system for producing the vacuum induction field ~Bvac is presented. For
identification of coil currents all poloidal field coils and all segments of the central solenoid
are labeled. These coil currents are used to create the vertical field and were adjusted for
the plasma shaping, see section 5. The geometry of the PF coils and the central solenoid is
based on the physics scenario 2019 of EUROfusion. For the toroidal field there are 16 D-
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Figure 4.3: Sectional view of the applied DEMO coil system for this thesis, including ferro-
magnetic inserts installed into the segments of the vacuum vessel. The vacuum
vessel is made up of 16 segments in the toroidal direction and each segment has
three ports. Between these ports the toroidal field coils (TF coils) are located,
with ferromagnetic inserts (FI) underneath each TF coil. The volume of each fer-
romagnetic insert is divided symmetrically around the connection surface of the
two segments of the vacuum vessel. There are 16 TF coils in total, which are
enumerated counter clockwise viewed from above. Furthermore poloidal field coils
(PF coils) and the segments of the central solenoid (CS) are depicted.

shaped coils which create the toroidal field ripple due to their toroidal spacing. As well as the
geometry of the vacuum vessel, they are based on the EU-DEMO baseline 2017, where most
of the engineering work was carried out. The ferromagnetic inserts are created based on the
geometry of the vacuum vessel. These ferromagnetic inserts are passive elements and interact
with the field produced by the coils by aligning existing microscopic magnetic moments along
the field they are exposed to. Thus, the toroidal field inside the ferromagnetic inserts is
enhanced, while, on the other hand, the field outside the ferromagnetic inserts at the plasma
boundary is reduced. Therefore the toroidal field ripple is reduced, as explained in section
5.3.3.





5 Coupling of the code system

5.1 Outline of the code system and applied workflow for
ripple studies

A code system has been developed to process output from ASTRA simulations into 3D co-
ordinates of nested flux surfaces, computed by NEMEC. The 2D equilibrium computed by
the equilibrium solver SPIDER, as part of the ASTRA simulations, is coupled with a realistic
coil system containing a finite number of toroidal field coils and therefore the toroidal field
ripple. Thereby existing simulation and computation codes according to section 3 are uti-
lized and connected together by newly developed codes. Besides NEMEC, MAKEGRID and
DESCUR also ASTRA is considered as an existing code. This is because the creation of the
actual transport simulation by using the ASTRA environment is done in the provision study
[14], as described in section 4.1. Newly developed are the codes PIGEN (PARVMEC Input
GENerator)and MIGEN (MAKEGRID Input GENerator). Their integration in the overall
code system is shown in figure 5.1.
This code system is applied in a workflow, consisting of three major steps. Each of these steps
is carried out first for the L-mode and afterwards for the H-mode.

1. 2D fixed-boundary simulation in NEMEC.
The ASTRA output file for the corresponding plasma scenario is translated to a NEMEC
input file by using PIGEN. The relevant tasks PIGEN needs to perform are described in
section 5.2. In the ASTRA simulations in the scope of [14] for this work the q-profile is
prescribed, but it evolved in NEMEC. Therefore a first consistency check is carried out
by reaching the same q-profile in the NEMEC simulation.

2. 2D free-boundary simulation in NEMEC.
The next step consists of using MIGEN to create a MAKEGRID input file, based on
geometry of the poloidal field coils and the central solenoid, to produce a 2D axisym-
metric vacuum induction field. This field is then used in a 2D free-boundary NEMEC
simulation. Because the plasma boundary is prescribed in [14], the values of the coil
currents need to be adjusted to reproduce the boundary, see section 5.3.1 for details.

3. 3D free-boundary simulation in NEMEC.
The last step of the workflow takes the toroidal field coils and ferromagnetic inserts
into account to compute a 3D vacuum induction field with MAKEGRID. Again MIGEN
is used to create the corresponding input file for MAKEGRID, as described in section
5.3.2 and 5.3.3. The resulting 3D vacuum induction field is then applied in 3D free-
boundary NEMEC simulations to evaluate the plasma response and the impact of the
ferromagnetic inserts.
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ASTRA
Automated Sytem for
TRansport Analysis

1.5D transport code, see section 3.1
MAKEGRID

Calculates the resulting vacuum
induction field of a given
coil system as initial state
for NEMEC, see section 3.2

MIGEN
MAKEGRID Input GENerator

Translating coil geometries to
current carrying filaments in

Makegrid-format, see section 5.3

Engineering parame-
ters given in table 4.1
and transport model
according section 3.1

Geometry of the coil
system, see section 4.2

PIGEN
PARVMEC Input GENerator

Translating the pressure profile,
plasma current profile to

NEMEC-format, compute total
toroidal flux and convert plasma
boundary to Fourier description

by using DESCUR, see section 5.2

DESCUR
Calculates an optimized Fourier
representation of a given plasma
boundary from ASTRA in {R,Z}

coordinates, see section 3.3

PARVMEC
Parallelized version of

NEMEC = NESTOR + VMEC
NEumann Solver for TOroidal Regions
Variational Moments Equilibrium Code

Starting from an initial state an equilibrium is
found by minimizing the energy. This is achieved
with a Lagrangian evolution of nested flux surfaces

in magnetic coordinates and calculating the
corresponding metric tensor elements to transform
to a toroidal coordinate system [27], see section 3.4

Coordinates of 3D
nested flux surfaces

post-processing
Relevant for this work
is BMW (Biot Savart

Magnetic VMEC Vector
potential) for recon-

structing magnetic field
lines outside the confined
plasma, see section 6.1.2

Figure 5.1: Outline of the code system to process a 2D axisymmetric equilibrium of an L-
mode and an H-mode scenario to 3D nested flux surfaces under consideration of
the toroidal field ripple. The relevant L-mode and H-mode are described in section
4.1. With the resulting 3D coordinates the plasma response to the toroidal field
ripple is investigated in section 6.
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5.2 Preprocessing of ASTRA output

The output files of ASTRA simulations can not be loaded directly into NEMEC simulations,
although the physical quantities are available. Besides formatting of an input file, there are
four major tasks to be done. Each of these is described below, together with an investigation
of the q-profile convergence. In this work these four tasks were automatized and combined in
a tool named PIGEN.

Pressure profile.
The ASTRA output file contains several pressure contributions, depending on the applied
modules. The ones that are taken into account in this work are the pressure of thermal
electrons, thermal ions and the fast ion contribution, as given in eq. (4.1a). For each flux
surface a value for the pressure exists. In ASTRA flux surfaces use the square root of the
normalized toroidal flux ρ =

√
Φ/Φedge as radial coordinate and can therefore take values

between [0, 1]. NEMEC on the other hand uses s, the normalized toroidal flux as radial
magnetic coordinate s = Φ/Φedge. The relation between the two different radial grid variables
is

s = ρ2 (5.1)

In PIGEN the values for the pressure are unchanged, just the corresponding grid position is
squared. Additionally the radial grid in ASTRA skips the point at ρ = 0. For NEMEC the
pressure profile is thus linearly extrapolated to the axis. As one can see in the pressure profiles
of the L-mode (figure 4.1) and H-mode (figure 4.2) this is an appropriate assumption.

Plasma current profile.
The plasma current profile Ipl(s) is used in this work as second input profile for NEMEC. In
NEMEC the plasma current profile is passed as radial derivative of the normalized plasma
current and the absolute value of Ipl(s = 1) = Ipl(ρ = 1) . The needed absolute values are
given for L-mode and H-mode in sections 4.1.1 and 4.1.2. For the computation of the radial
derivative of the plasma current profile the values of the ρ-grid in ASTRA need to be translated
to a s-grid according to eq. (5.1). Thereby numerical issues arise, both on the axis (ρ = s = 0)
and at the Last Closed Flux Surface (LCFS at ρ = s = 1), as figure 5.2 shows. On the left
side of this figure it is shown, that a small unphysical drop in the plasma volume computed by
SPIDER between the value at ρ = 1 and the previous one leads to a substantial drop in the
radial derivative. This is caused by the sensitivity of the applied first order finite differences
approach for the computation of dV/dρ, due to small denominators. The applied solution is
to replace the last value of the volume by a linear extrapolation. The second numerical peak
is near the axis at s = 0 in the dV/ds-curve. While keeping the values for the volumes of
flux surfaces V , the differences in the coordinate s between two neighboring flux surfaces is
reducing quadratic, because of eq. (5.1). According to eq. (4.1b) the radial derivative of the
plasma current is proportional the product of the toroidal current density jtor and the radial
derivative of the volume. Therefore the numerical peak in the original curve of dV/ds is also
present in the plasma current for NEMEC. To avoid this, again a fit of the radial derivative
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of the volume on the s-grid is applied. Near the axis the volume inside a flux surface can
be approximated by V = 2πR0 · πr2 = 2π2R0r

2, where r is a average minor radius. With
s = Φ/Φedge ∝ r2 [10] one can see that V ∝ s. Therefore

lim
s→0

dV

ds
= const. (5.2)

In SPIDER on the other hand the differences in successive volumes is not decreasing fast
enough by translating to the s-grid. This is implemented in PIGEN, by a horizontal fit of
the radial derivative of dV/ds to s = 0, beginning at a user specified value. The solid lines in
figure 5.2 show the curves used for NEMEC simulations in this work.
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Figure 5.2: For L-mode (a) and H-mode (b) on the left side the volume and its radial derivative
computed by SPIDER on ρ-grid is shown. As indicated by arrows these quantities
are translated to dV/ds for NEMEC, where one can observe that the drop at LCFS
in the data of SPIDER impacts both grids. Additionally a second numerical peak
at the magnetic axis at s = 0 occurs, because of the numerical sensitivity of the
applied first order finite differences approach for the computation of dV/ds. The
radial derivative of the plasma current dIpl/ds used in NEMEC is proportional
to the product of dV/ds · jtor, that is why the numerical inaccuracies in dV/ds of
the SPIDER data would translate to NEMEC input. The dashed data is taken
directly from SPIDER, the solid lines indicate the fitting for passing the data to
NEMEC as explained in the text.
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Computation of the total toroidal flux.
The total toroidal flux needs to be prescribed as a conserved quantity in NEMEC simulations.
In the equilibrium solver SPIDER, implemented into the provided ASTRA simulations of [14],
the Grad-Shafranov-eq. for the poloidal flux χ is solved. Between the poloidal and toroidal
flux the relation ship ῑ = χ′/Φ′ with the rotational transform ῑ = 1/q (eq. (2.12)) is used to
computed the total toroidal flux by

Φedge =
∫ s=1

s=0
χ′qds (5.3)

where prime denotes the radial derivative with respect to s.

Optimized Fourier representation of the boundary.
As described in section 3.4 NEMEC uses a constraint to reduce the spectral extent of the
poloidal mode number m and produce condensed Fourier representations. For this reason the
Fourier coefficients for the boundary passed to NEMEC need to fulfill the same constraint.
Otherwise boundary layers in the spectral representation can occur [26].
The plasma boundary in the ASTRA output file is given in {R,Z} coordinates. These are
translated to Fourier coefficients by calling DESCUR, which is based on the same spectral
condensation, as explained in section 3.3. This ensures the correct behaviour of the spectral
representation in NEMEC simulations near the LCFS. A consequence of the Fourier represen-
tation is, that the so-called X-point can not be resolved with a finite number of poloidal har-
monics. The X-point can be seen in figure 4.1 (b) as the lowest point (smallest Z-coordinate)
of the separatrix, where a kink is located. This has no impact on the investigations in this
thesis, but it is used to distinguish in the following discussions the expression separatrix and
LCFS. A separatrix is referred to the curve of a plasma boundary with resolved X-point and
a LCFS without resolved X-point, because of a finite number of poloidal harmonics.

Convergence of q-profile.
As described in section 3.4, NEMEC needs besides the pressure profile a second profile, which
can either be the q-profile or the plasma current profile. In provision study [14], which provides
the plasma scenarios, the q-profile is a prescribed flux surface quantity. To perform a consis-
tency check with regard to the preprocessing of the ASTRA output, the plasma current profile
is used as a second profile in NEMEC. Therefore, the q-profile is evolving and the simulation
is expected to end with the q-profile as originally prescribed in the ASTRA simulations. This
consistency check is shown in figure 5.3.
It can be seen in figure 5.3, that there is a deviation of the two q-profiles near ρ = 0. Because
this quantity is located in the vicinity of the magnetic axis, the influence of the maximum
poloidal mode number as numerical parameter in the NEMEC simulations can be neglected.
It is expected, that the major influence is the resolution of the radial grid in combination with
the force tolerance, see figure 3.3. NEMEC uses a constant grid in the radial coordinate s
and hence, the total number of radial grid points needs to be increased to resolve the axis
region. As shown in figure 5.4 the value of q(s = 0) in the L-mode takes a value slightly above
0.96. This drop of the q-profile in the vicinity of the magnetic axis has no influence on the
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Figure 5.3: The q-profiles of L-mode (a) and H-mode (b) as a result of 2D fixed-boundary
NEMEC simulations. The q-profiles are not prescribed in NEMEC and evolve
while minimizing the energy of the plasma. For comparison the q-profile of ASTRA
are included. One can see that up to difference in the vicinity of the magnetic axis
the q-profiles of NEMEC and ASTRA are the same.

results in this work. Besides the numerical resolution in NEMEC the accuracy of SPIDER
can be a source of the deviation between the simulation results. SPIDER is intended for
rapid simulations in integrated modeling. Furthermore, SPIDER is called just every 5 ms of
in-ASTRA time. Therefore, the solutions of NEMEC and SPIDER can be related to slightly
different times.

0 500 1000 1500 2000 2500 3000 3500

0.9575

0.9600

0.9625

0.9650

0.9675

0.9700

0.9725

0.9750

0.9775

ns

q(
s
=

0)

ftol=1e-07, mpol=20
ftol=1e-09, mpol=20
ftol=1e-11, mpol=20
ftol=1e-14, mpol=20

Figure 5.4: On-axis q(s = 0) of the L-mode plasma scenario as a function of numerical param-
eters ns and ftol. The maximum poloidal mode number mpol used in NEMEC
is kept at a numerical efficient value of 20. The force tolerance is converged at a
value of ftol=1 · 10−11. The radial grid points show convergent behaviour even
though a value of ns=3400 is not fully converged.
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5.3 Modelling of the coil system for MAKEGRID

5.3.1 Axisymmetric vacuum induction field. Poloidal field coils and
central solenoid

For computing a 2D vacuum induction field the poloidal field coils, as well as the central
solenoid segments according to figure 4.3 need to be translated to MAKEGRID input format.
MAKEGRID works internally with filaments representing line conductors. The extended
spatial cross section of coils needs to be approximated by several windings, where each winding
is represented by a closed loop of a line conductor. In order to convert the given geometry of
the coils, each coil is first considered to consist of a single line conductor describing the central
path along the coil. A cross section is then supplemented and extruded along the path. This
modeling of the coils is done by using a code called MIGEN.
For a circular conductor, wound around the torus axis, MAKEGRID uses a representation
by a single coordinate in a R-Z-plane. The rotation around the axis is performed implicitly
inside MAKEGRID. Therefore, to model an extended cross section a set of points needs to
be generated. MIGEN does this, by receiving first the coordinate of the center point of the
cross section, which is interpreted as the path of the coil. In a second step the cross section is
defined by the linear dimension in the R- and Z-coordinate, together with a maximum distance
between neighbouring windings1. Based on this maximum distance the needed number of
windings in both directions is computed and the windings are positioned equally along the
axes. The result of this procedure is depicted in figure 5.5.
Besides the geometry of a coil, the current inside each winding needs to be passed to MAKEGRID.
Together with the geometry this value was initially taken from the baseline 2019 scenario of
EUROfusion. The usage of MAKEGRID output files for a free-boundary simulation in NE-
MEC offers the flexibility to adjust the current of each coil by the NEMEC input file. This
is enabled, because MAKEGRID stores the vacuum induction field resulting from each coil
separately. The overall induction field can then be received by the vector sum, due to the
superposition of magnetic fields. As one can see based on eq. (3.1), multiplying the originally
applied coil current Icondi by a constant factor is equivalent to multiplying the resulting field
~Bcoil of a coil by this factor. This flexibility is implemented in NEMEC by specifying so-called
extcur-values for each coil. NEMEC multiplies the corresponding coil induction field with
the extcur-value before computing the vector sum and therefore this is equivalent to using
different values for the coil currents in the first place. This feature is utilized in this work to
adjust the plasma shape. The initially applied values for the currents of the coils in figure
5.5 result in different plasma boundaries than the ASTRA simulations prescribed, due to the
progress from DEMO baseline 2018 to 2019. The latter provides the coil currents for the
vertical field, whereas the former the reference plasma boundary. A summary of the applied
values in this work, together with the resulting plasma shape is given in figure 5.6.
For a quantitative comparison of the shaped NEMEC and ASTRA boundary three parameters
are used. The first one is the elongation κ, defined by

κ = (Zmax − Zmin)/2a (5.4)

1Measured along the R- and Z-axis independently.
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Figure 5.5: Coil filaments for computing a 2D axisymmetric vacuum induction field by
MAKEGRID. Each cross indicates the coordinate of a single circular filament in
the x-z-plane, which coincides with the plane at φ = 0 in a corresponding toroidal
coordinate system. The coordinates are shown in Cartesian coordinates, because
this is the applied coordinate system inside MAKEGRID. The rotation around the
major axis at x = 0 is implicit. For the maximum distance between two neigh-
bouring windings a value of 0.2 m is used in this thesis, because it produces a
reasonable filling of the cross section. The central positions of each coil, as well as
the width and height are provided by DEMO baseline 2019.

with minor radius a defined as a = (Rmax − Rmin)/2. Zmax is the maximum Z-coordinate of
the boundary. The quantities Zmin, Rmax and Rmin are defined analogous. The second and
third figure of merit are the upper and lower triangularities δupper and δlower, given by

δupper =(Rgeo −RZmax)/a (5.5a)
δlower =(Rgeo −RZmin

)/a (5.5b)

with the geometric mean radius Rgeo = (Rmax + Rmin)/2, the R-coordinate of the boundary
point with the maximum Z-coordinate RZmax and RZmin

defined analogous to RZmax [29].
To perform the 2D free-boundary NEMEC simulations, an axisymmetric toroidal vacuum
induction field is necessary. This field is modeled, by a vertical straight line filament placed
at R = 0. The coil current is determined by using Stokes theorem for a straight conductor,
from which

Iaxisym = 2πB0R0

µ0
(5.6)

is received, with the on axis toroidal induction field B0 and the major radius R0, according to
table 4.1 for L-mode and H-mode.
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Icoil according to applied extcur-values adjusted Icoil (ncond)

DEMO baseline
2019

L-mode H-mode L-mode H-mode

Iaxisym −263.3 MA 1,0 1.0 −263.3 MA (1) −263.3 MA (1)

PF1 13.3 MA 1.25 1.3 16.6 MA (16) 17.3 MA (16)

PF2 −2.5 MA 1.8 1.9 −4.5 MA (16) −4.8 MA (16)

PF3 −8.1 MA 0.68 0.79 −5.5 MA (16) −6.4 MA (16)

PF4 −4.2 MA 0.4 0.43 −1.7 MA (16) −1.8 MA (16)

PF5 −6.6 MA 1.38 1.45 −9.1 MA (16) −9.6 MA (16)

PF6 15.8 MA 1.1 1.06 17.4 MA (25) 16.8 MA (25)

CS1 11.9 MA 0.8 0.7 9.5 MA (36) 8.3 MA (36)

CS2 7.8 MA 1.1 1.03 8.6 MA (36) 8.0 MA (36)

CS3 −5.7 MA 1.45 1.15 −8.3 MA (64) −6.6 MA (64)

CS4 8.0 MA 1.0 1.0 8.0 MA (36) 8.0 MA (36)

CS5 14.7 MA 1.3 1.3 19.1 MA (36) 19.1 MA (36)

(a) Adjustment of coil currents

(b)
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Figure 5.6: (a) Rounded coil current values Icoil, flowing through the cross section of the
corresponding coil, according to DEMO baseline 2019 for poloidal field coils and
central solenoid segments. The coil current Icoil is the sum over all currents in the
conductors (windings) of the coil, Icoil = ∑

Icond with Icond of eq. (3.1). Iaxisym is
computed by eq. (5.6) with the engineering values of table 4.1. All coil currents
are multiplied with different extcur-values for L-mode (b) and H-mode (c) to
reproduce the reference boundary of DEMO baseline 2018 (see section 4.1). The
adjusted coil currents are given together with the number of conductors ncond for
each coil. The comparison of the boundary shape is performed by the elongation
κ (eq. (5.4)) and the upper and lower triangularities δ (eq. (5.5)) of the plasma
boundary.
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5.3.2 3D vacuum induction field. Toroidal field coils

For 3D free-boundary simulations the 2D axisymmetric toroidal field of the previous section
needs to be replaced by the vacuum induction field of the toroidal field coils (TF coils).
Therefore, the TF coil geometry of figure 4.3 is translated in a comparable manner to the
poloidal field coils into MAKEGRID format. The start of the modelling of the TF coils is a
set of {R,Z}-coordinates of a single curve, describing the inner D-shaped circumference. This
curve is depicted in figure 5.7 as provided data. The blue TF coil in this figure is created
at first and the 15 further TF coils are generated by copying and rotating this coil. Figure
5.7 shows the data in the Cartesian coordinate system used in MAKEGRID. In the following
the parametric modelling of this first, blue TF coil is explained, referring to the Cartesian
coordinate system. A description based on the coordinates of vectors is used to be closely
related to the implementation in MIGEN.
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Figure 5.7: Toroidal field coils in front view (left) and top view (right). In the front view the
data of figure 5.5 is adopted. The data is shown in Cartesian coordinates, because
those are used inside MAKEGRID. In the front view the curve representing the
inner circumference of a toroidal field coil is included. This curve is the starting
point for the parametric modelling of the coils as described in the text. For the
toroidal field coils the maximum spacing between two windings in the x- and y-
direction is set by two independent parameters. This is used to align the number
of windings in a layer (12) and the number of layers (4) to the cross section of a
single toroidal field coil used in [11].

First, a layer of 12 windings with same x- and z-coordinates as the provided data in figure 5.7
is created2. This layer can be seen in perspective in the rotated green TF coil. In analogy to
the poloidal field coils, this provided data is called the path of the coil. The i-th point of a
winding of the first layer is given by

2The {R,Z}-coordinates of the provided do not need to be sorted. A algorithm for sorting these points along
the inner circumference is implemented into MIGEN.
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xi =xi,path

yi =− 1
2w + j ·∆y

zi =zi,path

(5.7)

with the width w of the coil in y-direction, j a loop indices running from zero over the number
of windings in the first layer nwind,y and the spacing in the y-coordinate between two windings
∆y. nwind,y and ∆y are computed by the ceil function through

nwind,y = d w

∆ymax
e ⇒ ∆y = w

nwind,y
(5.8)

with a user specified parameter ∆ymax, determine the maximum spacing between two windings
along y-direction.
Second, the cross section is extended into an outward oriented radial direction, viewed from
the center of the toroidal field coil. Therefore, in an iterative manner additional layers of
windings are added. For the blue TF coil a layer is referred to windings with same x- and
z- coordinates, but distinct y-coordinates. These layers can be seen in perspective at the
green TF coil in figure 5.7 after a rotation is applied. For the blue coil the first layer is the
most inner one, consisting of 12 windings after their the creation according to eq. (5.7). The
second layer is created by stretching a copy of the first layer radially outward. For each point
in a winding of the first layer a tangential vector is approximated by the difference vector
~di,j = {di,j,x, di,j,y = 0, di,j,z} to the neighbouring point in the same winding, ~di,j = ~ri+1,j−~ri,j.
The subscripts i, j indicate thereby the index of the i-th point in the j-th winding of the first
layer. The y component of this difference vector is always 0, because the extrusion is performed
in planes parallel to the x-z-plane and hence, represent a 2D problem. These difference vectors
are then rotated by 90° around the y-axis, so that they are pointing radially outwards, viewed
from the inner of the toroidal field coil. This 90° rotation is performed by

si,j,x =− di,j,z
si,j,y =0
si,j,z =di,j,x

(5.9)

with the effectively 2D shift vector of ~si,j as the resulting vector of the rotation. These shift
vectors give the direction into which the i-th point of a copy of the j-th winding of the first
layer is displaced to generate the second layer. They are used to generate corresponding points
of a winding of the second layer ~r2nd,i,j = {x2nd,i,j, y2nd,i,j, z2nd,i,j} by

x2nd,i,j =x1st,i,j + ∆x · si,j,x
|~s|

y2nd,i,j =y1st,i,j + ∆x · si,j,y
|~s|

z2nd,i,j =z1st,i,j + ∆x · si,j,z
|~s|

(5.10)
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based on a copy of the windings of the first layer, indicated with subscript 1st. ∆x is a
step width, computed by the number of layers nlayer and the thickness t of the TF coil in
x-direction, measured at z = 0, by

nlayer = d t

∆xmax
e ⇒ ∆x = t

nlayer
(5.11)

As already mentioned, after the second layer is created the next layer is generated. The second
layer takes thereby the role of the first layer and the algorithm is repeated. This iteration
continues, until all nlayer layers are created.
Besides the geometry of the TF coils, the coil current is needed. The current in all TF coils
ITF is equal and is computed by

Iaxisym = 16 · ITF ⇒ ITF = Iaxisym
16 (5.12)

with the current producing the axisymmetric toroidal vacuum field of eq. (5.6).

5.3.3 Modelling of the ferromagnetic inserts as coils

As introduced in section 4.2 the ferromagnetic inserts are passive elements, composed of ferro-
magnetic material inside the wall of the vacuum vessel. They interact with the induction field
produced by the coil system by aligning existing magnetic moments. These aligned magnetic
moments produce a superposing induction field, determined by the geometry of the inserts and
the magnetic permeability curve of the material. In [11] the resulting vacuum induction field
is computed by using finite element methods. In this work, on the other hand, MAKEGRID
is used to compute the vacuum induction field and a coil model for the ferromagnetic inserts
has been developed and compared to [11].
In the following the creation of a coil model, reproducing the effect of ferromagnetic inserts
(FIs) is explained for one ferromagnetic insert (FI). All further 15 FI volumes are treated
equally. The FIs are considered to be in a static state. Hence, no currents are present. The
quantitative description starts by dividing the volume of the FI into five segments in the
poloidal direction. For each segment a representative magnetic moment ~mFI is computed.
This magnetic moment emerge, because the existing microscopic magnetic moments in the
ferromagnetic material align with the field of the toroidal field coils they are exposed to.
For the computation of ~mFI a segment is split into smaller regions in the poloidal cross
section and a local magnetic moment ~mlocal for each of these regions is computed. Both
magnetic moments are visualized in figure 5.8. All magnetic moments ~mFI produce a magnetic
dipole field, increasing the field strength inside the FI, but weaken it outside of the FI, where
the plasma boundary is. Thus, the regions underneath the toroidal field coils with higher
magnetic induction are reduced at the plasma boundary and subsequently the toroidal field
ripple decreases.
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~v2

Figure 5.8: Ferromagnetic insert (magenta volume) in exposed magnetic induction field gen-
erated by toroidal field coils. The exposed toroidal vacuum field is visualized by a
color plot on the center plane of a ferromagnetic insert. Jumps of the field strength
can be seen around the ferromagnetic insert, where the toroidal field coils are lo-
cated. A ferromagnetic insert is split into several segments and for each segment
a representative magnetic moment ~mFI is computed. In this work ferromagnetic
inserts are divided into five segments. ~mFI is the vector sum of several local mag-
netic moments ~mlocal. For every blue point inside a segment ~mlocal is computed
according to eq. (5.13), where Rlocal is the radius of the position of the correspond-
ing ~mlocal-vector related to the major axis of the torus and Alocal = |~v1 × ~v2| is the
area spanned by the local vectors ~v1 and ~v2.

The toroidal component mFI,φ, which is relevant for the investigation of the toroidal field
ripple, is computed by

mFI,φ =
∑

mlocal,φ (5.13a)
=
∑

Mφ · Vlocal (5.13b)
=
∑

Mφ · Alocal ·Rlocal ·∆φ · ff (5.13c)

with summation over all blue points of the corresponding FI segment, depicted for outboard
midplane in figure 5.8. The mean magnetization per volumeMφ is extracted from the magnetic
permeability curve based on the exposed vacuum field at the location of ~mlocal (blue points)
by eq. (5.14). Mφ is multiplied by a local volume Vlocal. This local volume is spanned by a
small area in the poloidal cross section, Alocal, extruded along a curve with fixed radius Rlocal

and rotation around the major axis of the torus of ∆φ. Alocal is spanned by the vectors ~v1
and ~v2, depicted in figure 5.8. ∆φ is a parameter, for which the value ∆φ = 6.5° is used, as
in [11]. Furthermore a filling factor ff with values [0, 1], giving the amount of ferromagnetic
material inside the volume of the ferromagnetic inserts, is applied as parameter. This filling
factor is also included in the investigations of [11], because the FI can overcompensate the
toroidal field ripple. Therefore it is necessary to reduce the amount of ferromagnetic material
in the FI volume, in order to minimize the toroidal field ripple.



5 Coupling of the code system 46

0 0.2 0.4 0.6 0.8 1

·107

0

5

10

H [A/m]

B
[T
]

magnetic permeability curve
vacuum permeability

Figure 5.9: Magnetic permeability curve used to compute the magnetization of the ferromag-
netic inserts. The marked data points are given in [11]. The extrapolation for the
saturated region is based on the vacuum permeability.

The magnetization of the material Mφ is extracted from the magnetic permeability curve3.
Therefore, the vacuum induction field of the toroidal field coils Bvac,φ = Bexposed,φ is interpreted
as field to which the ferromagnetic inserts are exposed to. This induction field is translated to
a vacuum magnetic field Hexposed,φ = Bexposed,φ/µ0. The value of Hexposed,φ is used to read out
the value of the induction field inside the ferromagnetic insert BFI,φ according to the magnetic
permeability curve, shown in figure 5.9. The induction field inside the ferromagnetic inserts
consists of BFI,φ = µ0(Hexposed,φ +Mφ) and thus the magnetization is given by

Mφ = 1
µ0

(BFI,φ −Bexposed,φ) (5.14)

with Bexposed,φ = µ0Hexposed,φ.
To reproduce the magnetic moments mFI,φ in MAKEGRID, windings of current carrying
filaments are wrapped around each segment, so that they produce a magnetic moment aligned
to ~mFI in figure 5.8. The applied geometry of the windings of these FI coils is shown in figure
5.10. Inside MIGEN the FI coils are generated similar to the toroidal field coils, explained
in detail in section 5.3.2. First a curve as the provided data in figure 5.7 is split into a user
specified number of segments. This curve describes a section of the inner poloidal contour of
the vacuum vessel. Next, for each segment the first winding is closed around the segment.
Therefore, the inner contour is copied and shifted by shift vectors as in eq. (5.10) radially
outward by the thickness of the wall of the vacuum vessel. This first winding is subsequently
copied and rotated around the major axis of the torus, to generate all windings of a segment
over the toroidal spacing of a FI of ∆φ = 6.5°.
In addition to the geometry, the coil currents of the FI coils need to be computed. Therefore
the magnetic vacuum induction field is written as ~Bvac = ~∇ × ~Avac with the corresponding
vector potential ~Avac. For a given current density ~j(~r) the vector potential is

3The subscript φ in Mφ indicates, that for the external field solely the contribution of the toroidal field coils
is used.
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Figure 5.10: Geometry of the ferromagnetic inserts coil model (FI coil) in MAKEGRID format.
A single ferromagnetic insert is divided into five segments with eight windings
around a segment, labeled with FI1 to FI5 for one example. A increase in the
number of windings and segments showed no substantial effect in the simulations
within this thesis. Five FI coils are located underneath each toroidal field coil.
For transparency only two toroidal field coils with FI coils are depicted. The coil
system of figure 5.5 and 5.7 is adopted for completeness in this plot. The poloidal
shape of the FI coils is chosen to span the thickness of the vacuum vessel wall
along the circumference over a region with optimal reduction of the toroidal field
ripple, according to [11]. This region of the ferromagnetic inserts is referenced as
case02 in [11].

~A(~r) = µ0

4π

∫
d3r′

~j(~r′)
|~r − ~r′|

(5.15)

This can be expanded by using the multipole expansion

1
|~r − ~r′|

= 1
r

+
~r′ · ~r
r3 + ...

The first term is describing a monopole, which vanishes for magnetic fields. Starting with the
first, non vanishing term one can express the vector potential of the vacuum field as

~A(~r) = µ0

4π
~m× ~r
r3 + ... (5.16)

with the magnetic dipole moment ~m, defined in (5.16) as [30]
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~m = 1
2

∫
~r′ ×~j(~r′)d3r′ (5.17)

Now the magnetic moment is expressed in terms of the coil current I, which is the same in
all filaments (windings), instead of the current density ~j. Therefore, the transition between a
spatially distributed current density ~j and the i-th filament li, carrying the current I, is done
by using the substitution ~jd3r → Id~li [30]. This gives

~mcoil = I

2
∑
i

∫
~r × d~li (5.18)

with the differential vector d~li along the i-th filament. The sum includes all filaments of the
FI coil in figure 5.10.
For the FI coil to reproduce mFI,φ, the φ component of ~mcoil is forced to be the equal to eq.
(5.13): mcoil,φ

!= mFI,φ. This gives the relation for the coil current

I = 2mFI,φ(∑
i

∫
~r × d~li

)
φ

(5.19)

The integral in the denominator is computed numerically. For the numerical computation
of the integral, it is used, that this integral is independent of the choice of the origin of ~r,
because it is determined by the poloidal cross section area F = ∑

Alocal of the FI coil, which
is invariant under spatial transformations [30].

∫
∂F
~r × d~l =−

∫
F

(d~f × ~∇)× ~r

=
∫
F

(~∇ · ~r) · d~f − ~∇ · (~r · d~f)

=
∫
F

2d~f

=2F

(5.20)

In line two it is used, that ~r can be chosen in a plane with d~l. Then ~r ·d~f = 0 and for the case
of a plane ~∇ · ~r = 2. Afterwards the result can be transformed into other coordinate systems.
However, this leaves the cross section area F unchanged.

Comparison to report [11].
In [11] the toroidal field ripple δ̃ (eq.(2.13)) is computed for a 3D vacuum induction field of
DEMO baseline 2017, using finite element methods. Thereby a parametric study on the filling
factor ff of eq. (5.13) is carried out. A value of ff = 0 is equivalent to section 5.3.2, where
no ferromagnetic inserts are contained. The total volume of ferromagnetic inserts in figure 4.3
filled with material corresponds to a value of ff = 1. In figure 5.11 a comparison between
the computations in [11] and the presented FI coil model in MAKEGRID is presented. This
comparison shows, that the FI coil model describes qualitatively the same behaviour of FIs
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as in [11]. Increasing the filling factor from 0 to 1, the toroidal field ripple first decreases. At
a optimal filing factor the FIs begin to overcompensate and hence, increase the toroidal field
ripple again. The overcompensation starts at outboard midplane, because the volume of the
FIs in this region is the largest.
The parametric scan of the filling factor shows, that the FI coil model can reproduce δ̃sep4 of
[11] also quantitatively, until a filling factor of 0.4. Increasing the filling factor further leads
to deviations, because the overcompensation at outboard midplane is described weaker in the
FI coils than in [11]. In [11] a optimal filling factor is found at ff = 0.4. For this value the FI
coils and [11] show consistent values and therefore the 3D vacuum field belonging to ff = 0.4
is used in all results of this thesis.
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Figure 5.11: Comparison of the coil model for ferromagnetic inserts (FI coils) to the data of
the report in [11], marked here as comparison data. In the report the toroidal
field ripple in the vacuum δ̃sep (eq. (2.13)) is computed on the separatrix of
DEMO baseline 2017. The therefore needed vacuum induction field, produced
by toroidal field coils with ferromagnetic inserts, is in [11] computed by a finite
element approach. (a) shows δ̃sep as a function of the the arc length of the
separatrix. For the FI coil data to be comparable to [11], the δ̃sep curves are
also related to the DEMO baseline 2017 separatrix. Several curves for different
filling factors (see eq. (5.13)) are included. In (b) a parametric scan of the
filling factor is shown, where for different filling factors δ̃sep,max is computed by
δ̃sep,max = max[δ̃sep(arc length)] with δ̃sep for the corresponding filling factor. In
[11] it is stated, that a optimal reduction of the toroidal field ripple is achieved for
a value of 40 %, as marked in this plot. The report is based on DEMO baseline
2017 scenario, with B0 = 4.89 T and R0 = 8.938 m. Therefore, MIGEN is used to
create MAKEGRID input with the same toroidal field for this comparison. The
number of windings in a toroidal field coil is adjusted to this report all over this
work.

4δ̃sep = δ̃ on the DEMO baseline 2017 separatrix.
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Potential causes for the deviation of FI coils and [11] in figure 5.11 are:

• The computation of the FI coil current according to eq. (5.19) is sensitive to the under-
lying magnetic permeability curve. The curve used in this thesis is extrapolated with
vacuum permeability, because of missing data points, as shown in figure 5.9. The exposed
vacuum induction field Bexposed,φ in eq. (5.14) takes absolute values in the extrapolated
region. It is not clear, if the extrapolation is performed in the same way.

• The filling factor ff in eq. (5.13) is assumed to be uniformly distributed in the radial
and toroidal direction. This is so far an assumption based on the available information
and needs to be verified.

The modeling of the geometry of the FI coils is not considered as a potential cause of the
deviations. The reason for this is the manual adjustment of the FI coil currents in figure 5.12,
showing that the FI coil geometry is able to reproduce the data from [11] over the whole range
of the filling factor. However, this adjustment of the coil currents has no physical basis so far.
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Figure 5.12: Manual adjustment of the FI coil currents to show, that the geometry of the FI
coils is able to reproduce the data of [11], marked here as comparison data. As
in figure 5.11, δ̃sep,max = max[δ̃sep(arc length)], with δ̃sep(arc length) computed
over the arc length of the DEMO baseline 2017-separatrix, for the corresponding
filling factor (eq. (5.13)). The difference to figure 5.11 (b) in this plot is, that the
coil current of FI3, located at outboard mid plane (see figure 5.10), is manually
set to 140 % of the value according to eq. (5.19). The other FI coil currents are
unchanged to eq. (5.19). This adjustment has no physical basis, but shows that
the geometry of the FI coils can reproduce the data of [11]. As for figure 5.11, the
data of [11] and the FI coils is based on DEMO baseline 2017 with B0 = 4.89 T
and R0 = 8.938 m.



6 Plasma response to the toroidal field
ripple

6.1 L-mode

6.1.1 Corrugation of flux surfaces

In section 5.1 a general workflow is described to perform 3D free-boundary simulations in
NEMEC, starting from ASTRA output. The required 3D vacuum field for these simulations
is based on a realistic model of 16 toroidal field coils. Due the toroidal spacing between these
toroidal field coils, the toroidal field ripple is present in the vacuum field, as investigated at
the end of section 5.3.3. By results of 3D free-boundary NEMEC simulations the corrugation
of flux surfaces, as plasma response to the toroidal field ripple, is presented in this section.
The key figure to quantify the flux surface corrugation applied in this section is the amplitude
of the corrugation δ(R,Z), computed according to eq. (2.14). δ(R,Z) is shown in figure 6.1
for vacuum fields with and without ferromagnetic inserts.
The plasma response is expected to have a 16-fold symmetry in the toroidal direction, because
of the 16 equally spaced toroidal field coils around the major axis of the torus. This is used to
reduce the computational load, by specifying in NEMEC a number of field periods Np = 16.
Hence, NEMEC computes the flux surface only on a section of the toroidal circumference of
2π/16. This section is then repeated 16 times in the toroidal direction to reconstruct the
complete torus. The Fourier series of eq. (3.13) can be rewritten, to show the Np parameter
explicitly as

R =
∑
m,n

[
r̂cm,n(s) · cos(mθ − n ·Npζ) + r̂sm,n(s) · sin(mθ − n ·Npζ)

]
(6.1a)

Z =
∑
m,n

[
ẑcm,n(s) · cos(mθ − n ·Npζ) + ẑsm,n(s) · sin(mθ − n ·Npζ)

]
(6.1b)

with the Fourier components r̂cm,n, r̂sm,n, ẑcm,n, ẑsm,n, magnetic coordinates s, θ, ζ and poloidal
and toroidal mode number m,n [31]. In the NEMEC simulations of this thesis the values
n = 0 and n = 1 of eq. (6.1) are included. This has the consequence, that only effects
according to values of the toroidal mode number n · Np = 0 and n · Np = 16, related to
complete toroidal circumference of 2π, can be observed in the data of this section.
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Figure 6.1: (a) shows the amplitude of the flux surface corrugation δ(R,Z), according to eq.
(2.14) in a poloidal cross section. The 3D flux surfaces, for the computation of
δ(R,Z), are a result of 3D free-boundary NEMEC simulations for a vacuum field
without ferromagnetic inserts (left) and with ferromagnetic inserts (right). To
resolve the corrugation a NEMEC-grid consisting of 16 toroidal equally spaced
planes and 300 points in the θ coordinate are used. The 16-fold periodicity is
used, to specify the number of field periods Np = 16, see text. Further numerical
parameters are the subject of the convergence study below.
(b) shows the toroidal field ripple of the vacuum δ̃(R,Z), according to eq. (2.13),
in comparison to δ(R,Z) for {R,Z}-coordinates on a axisymmetric LCFS. This
axisymmetric LCFS is reconstructed from 3D NEMEC simulations, using eq. (6.1)
with n = 0.
Data in (a) and (b) is based on the engineering parameters of table 4.1 and the
coil system described in section 4.2. Vacuum fields with ferromagnetic inserts (FI)
refer to a filling factor of 0.4 in section 5.3.3.
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Figure 6.1 shows, that the highest values for the amplitude of the flux surface corrugation
δ(R,Z) without ferromagnetic inserts are observed at the outboard position on the low field
side of the toroidal field. The amplitude of the corrugation decreases towards the magnetic
axis. At the high field side of the toroidal field, on the inner side of the torus, δ(R,Z) is
negligible. This is consistent with expectations, because toroidal field coils have no spacing
between each other at the circumference of the central solenoid, but the space increases towards
the low field side as illustrated in figure 1.4. Furthermore, figure 6.1 contains a comparison
between the toroidal field ripple in the vacuum field δ̃ and the plasma response δ, for the
cases with and without ferromagnetic inserts. It is observed, that the reduction of the toroidal
field ripple on the LCFS translates directly into the amplitude of the flux surface corrugation.
With and without ferromagnetic inserts the toroidal field ripple and the amplitude of the
flux surface corrugation are distributed equally over the low field side. Additionally, the
highest value of δ̃ and δ, with inclusion of ferromagnetic inserts, is in the same region of the
LCFS. The maximum value along the LCFS of δ̃LCFS is reduced from 0.71 % to 0.41 %. This
decrease by 42 % translates into δLCFS, which is reduced by 48 % in the maximum value. This
observation is consistent with the expectation, that the toroidal field ripple is a non-resonant
perturbation, as explained in section 2.3. A further confirmation of this conclusion can be seen
in the numerical convergence of δ(R,Z), shown in figure 6.2. By keeping the force tolerance
below a threshold for reasonable results one can see, that a small number of radial grid points
is sufficient to resolve the flux surface corrugation.
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Figure 6.2: Numerical convergence of δ (eq. (2.14)) at a position of θ = 54° on the plasma
boundary for a vacuum field including ferromagnetic inserts. The parameters are
the number of radial grid points ns, the force tolerance level ftol and the number
of poloidal harmonics mpol (see section 3.4). It is shown, that a converged value
of the flux surface corrugation can be assumed, with 800 radial grid points and a
force tolerance level of 1 · 10−11. Same plots for different poloidal angles θ confirm
this conclusion. All presented results in this section are computed with these two
values, together with a poloidal mode number mpol of 72, which is the highest
value achieved in NEMEC simulations in this work.
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6.1.2 Comparison to vacuum approximation

In this section the plasma response δ computed by 3D NEMEC simulations of the previous
section is compared to the so-called vacuum approximation. The vacuum approximation is an
independent superposition of two contributions to this magnetic field :

1. An axisymmetric induction field ~B2D of a 2D MHD equilibrium.
2. The toroidal field ripple in the vacuum induction field ~Bripple.

First, the MHD equilibrium is computed by a 2D free-boundary NEMEC simulation. To
obtain ~B2D for this equilibrium on the same grid as in MAKEGRID, the BMW code (Biot-
Savart Magnetic VMEC Vector potential) is used [12]. The computation on the same grid
simplifies the superposition with ~Bripple, computed by MAKEGRID. BMW uses the plasma
current density ~jpl computed by NEMEC and the corresponding vacuum field, which is applied
in the NEMEC simulation, computed by MAKEGRID for the reconstruction. MAKEGRID
contains besides the vacuum induction field for the free-boundary simulation also the related
vector potential ~Avac. With these two quantities BMW reconstructs the magnetic induction
field ~B2D inside and outside the plasma by [12]

~A2D(~r) =µ0

4π

∫
Ωpl

~jpl(~r′)
|~r − ~r′|

d3r′ + ~Avac(~r) (6.2a)

~B2D(~r) =~∇× ~A2D(~r) (6.2b)

For the second contribution, ~Bripple, the 3D vacuum induction field produced by the coils in
figure 5.7 is modified in a way, that the toroidal field ripple is extracted. For this extraction
a straight filament on the z-axis at x = y = 0 in the coil system of figure 5.7 is added. This
straight filament is identical to the one which produced the 2D axisymmetric toroidal field in
section 5.3.1, but now the current is flowing in the reversed direction. In the 3D coil system
of figure 5.7 the contribution of this reversed current in the central straight filament on the
z-axis suppresses the axisymmetric contribution of the toroidal field and thus, the toroidal
field ripple ~Bripple is extracted. The necessity for this central straight filament can be seen
by recognizing, that without it the axisymmetric contribution to the toroidal field would be
accounted twice. One time in ~B2D in the vacuum field of the 2D free-boundary NEMEC
simulation and again in the superimposed 3D field from the toroidal field coils.
The vacuum approximation is a superposition of magnetic fields, without giving us directly
the coordinates of the resulting flux surfaces. To compute a corrugation amplitude δ in
eq. (2.14) for the vacuum approximation, the connection length of field lines is computed.
The connection length of a field line is the spatial length of a curve, following the magnetic
field. The connection length is computed iteratively, following the field lines. It ends, if the
coordinates of the curve leave the computational grid, surrounding the plasma, or after a fixed
number of iterations. Thus, a sharp transition between confined (higher connection length)
and unconfined (smaller connection length) field lines is expected, because the confined field
lines circulate infinitely around the torus. This is shown in figure 6.3 for a coil system without
ferromagnetic inserts. A comparison to the inherent 3D NEMEC simulations is added, by
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using again BMW for a reconstruction of the magnetic field. This 3D data is not created as
superposition, because the toroidal field ripple is already contained in eq. (6.2) of BMW.
Figure 6.3 shows that the transition between confined and unconfined field lines does not
coincident with the LCFS of NEMEC simulations. Besides numerical inaccuracies, this can be
explained by the observation, that the transition of low to high connection length is described
by the separatrix, which can not be resolved in NEMEC due to the finite number of poloidal
harmonics. To ease then the comparison, two lines of constant connection length are depicted
in figure 6.3, one at the transition and one on the opposite of the LCFS. For both lines the
corrugation amplitude δ shows differences between vacuum approximation and 3D NEMEC
simulation of 2.3 mm and 1.4 mm. This is a deviation of the vacuum approximation between
26 % and 17 % to the 3D NEMEC simulation. Hence, the vacuum approximation can not fully
capture the plasma response to the toroidal field ripple.

Lc →
0 2000 4000 6000 8000 10000

δ1000 = 6.5mm

δLCFS = 8.6mm

δ6944 = 6.9mm

vac.-approx.

0 1 2 3

11.75

11.8

11.85

11.9

φ [rad]

R
[m

]

δ1000 = 8.8mm

δLCFS = 8.6mm

δ6944 = 8.3mm

3D NEMEC + BMW

0 1 2 3

11.75

11.8

11.85

11.9

φ [rad]

Figure 6.3: Comparison of connection length Lc of field lines in the vacuum approximation
(left) and of 3D NEMEC simulation (right) in the outboard mid plane at Z =
Zaxis. In both cases the magnetic field lines are reconstructed using BMW, as
explained in the text. A transition from confined (high Lc) to unconfined (low
Lc) field lines is marked with a line of a constant value of the connection length
of Lc = 1000 m. Furthermore a second line of constant connection length with
Lc = 6944 m is marked, because the transition between confined and unconfined
field lines is located at a bigger radius R than the LCFS of the 3D NEMEC
simulation. For all marked lines, the amplitude of the corrugation is given by
δ = max[R(φ)]−min[R(φ)]. NEMEC simulations for this plot (2D free-boundary
for vacuum approximation, as well as the 3D free-boundary) are computed with 800
radial grid points and a force tolerance level of 1 · 10−11, which are the converged
values according to section 6.1.1.
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6.2 Comparison between L-mode and H-mode

The comparison between the L-mode and the H-mode in this section is performed in terms of
the amplitude of the flux surface corrugation δ (eq. (2.14)), computed based on flux surfaces
from 3D free-boundary NEMEC simulations. The vacuum induction field for these simulations
is the same as used in section 6.1.1, where exclusively the plasma response of the L-mode is
presented. This vacuum induction field is computed by MAKEGRID based on the engineering
parameters in table 4.1 and the coil system shown in section 4.2. In the data of this section
only effects related to the toroidal mode numbers 0 and 16 can be observed. The reason for
this is the same as for the L-mode and is explained in section 6.1.1 based on eq. (6.1).
In figure 6.4 δ(R,Z) is shown for H-mode and L-mode in a poloidal cross section, for a vacuum
induction field containing ferromagnetic inserts for the reduction of the toroidal field ripple. It
is observed, that the absolute values of δ(R,Z) show no significant difference between H-mode
and L-mode. Furthermore, the color plot, decoding the amplitude δ(R,Z), shows for both
plasma scenarios the maximum ripple above outboard mid plane in the plasma edge and a
smaller, but non-zero, value in the plasma edge below outboard mid plane. This is expected,
based on the conclusion in section 6.1.1, that the plasma shows no interaction with the toroidal
field ripple in the vacuum field.
The numerical parameters for the H-mode and the L-mode in figure 6.4 are the same as in
section 6.1.1. Thereby a fluctuation in δ(R,Z) for the H-mode in the plasma edge can be
observed, which is not present in L-mode. For the visualization of the fluctuation δ is plotted
along the highlighted θ-lines. There it can be seen, that the fluctuation is located in the
plasma edge between a rational flux surface with q = 3 and the LCFS, solely for H-mode in
a vacuum induction field with ferromagnetic inserts. However, this fluctuation vanishes if the
force tolerance ftol is lowered and NEMEC consequently computes flux surfaces with smaller
residual forces for the equilibrium, as depicted in figure 6.5. Therefore the fluctuation is not
an indicator for a resonant perturbation.
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Figure 6.4: (a) shows a poloidal cross section containing a color plot for δ(R,Z), according
to eq. (2.14). The 3D flux surfaces for the computation are results of 3D free-
boundary NEMEC simulations with a vacuum induction field with ferromagnetic
inserts for the ripple reduction. On the left side the H-mode from section 4.1.2 is
shown and on the right side the L-mode from section 4.1.1. In both simulations
a value for the number of field periods Np = 16, in combination with a maximum
toroidal mode number n = 1, is used (see section 6.1.1). The grid inside NEMEC
uses ns=800, 300 points in the poloidal plane for a flux surface and 16 planes
in the toroidal direction. Further numerical parameters are the force tolerance
ftol=1 · 10−11 and the maximum number of poloidal harmonics mpol=72. These
values are chosen based on the convergence study of the L-mode in figure 6.2. All
numerical parameters are identical for H-mode and L-mode in this plot.
(b) shows δ(R,Z) along the θ-lines highlighted in (a) for vacuum induction field
with and without ferromagnetic inserts (FI). The position of rational flux surfaces
with q = 2 and q = 3 is marked. The fluctuation for the H-mode with ferromagnetic
inserts vanishes, if the force tolerance ftol is lowered, see figure 6.5.
Data in (a) and (b) is based on the engineering parameters of table 4.1 and the
coil system described in section 4.2. Vacuum fields with ferromagnetic inserts (FI)
refer to a filling factor of 0.4 in section 5.3.3.
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Figure 6.5: The amplitude of the flux surface corrugation δ(R,Z) (eq. (2.14)) of the H-mode
in the vacuum induction field with ferromagnetic inserts. The same scenario is
computed figure 6.4 with a force tolerance ftol=1 · 10−11 in the NEMEC simula-
tion. In this plot the force tolerance is lowered to ftol=1 · 10−14, while all other
simulation parameters are unchanged to the corresponding case in figure 6.4. This
reduction of the force tolerance enforces NEMEC to compute flux surfaces with a
smaller residual equilibrium force. Thus, the fluctuation in δ, shown in figure 6.4,
vanishes.



7 Conclusion and outlook

The conclusion of this work is oriented to the two major objectives, stated in the motivation
in section 1.2.

• Coupling of a code system for the computation of 3D flux surfaces in ideal MHD equi-
librium.
Starting with output of ASTRA simulations, supplying
– pressure profile,
– plasma current profile,
– poloidal flux,
– initial boundary and magnetic axis

for different plasma scenarios, the newly developed code PIGEN is used to preprocess the
output to NEMEC simulations. This coupling of ASTRA to NEMEC is supplemented
by 3D vacuum induction fields, with a finite number of toroidal field coils, offering the
possibility for 3D free-boundary simulations in NEMEC. The vacuum fields are computed
all over this work with MAKEGRID. For the parametric generation of MAKEGRID
input files, of realistic coil systems, a code called MIGEN is developed. The parametric
design of MIGEN accelerates the translation of different coil systems into MAKEGRID
format. Besides the native coils (toroidal field coils, poloidal field coils and central
solenoid) MIGEN implements the translation of ferromagnetic inserts inside the vacuum
vessel wall into a coil model. This coil model is shown to reproduce the dependence of a
filling factor of the volume qualitatively for all filling factors of the ferromagnetic inserts.
For higher filling factors however, the coil model predicts a weaker overcompensation of
the toroidal field ripple, compared to [11].

• Compute plasma response to the toroidal field ripple for the latest DEMO baselines.
The plasma response, in terms of the amplitude of the flux surface corrugation δ(R,Z),
to the toroidal field ripple is computed based on
– the engineering parameters of DEMO baseline 2018,
– the geometry of the toroidal field coils and the ferromagnetic inserts of DEMO

baseline 2017 and
– the geometry of the poloidal field coils and the central solenoid of DEMO baseline

2019.
The results for the L-mode, investigated in this thesis, show the expected results, that the
toroidal field ripple is a non-resonant perturbation. This is confirmed by showing direct
translation of the toroidal field ripple into the flux surface corrugation. This conclusion
is further confirmed for the H-mode, where a lower force tolerance is required in NEMEC
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simulations. With this lower force tolerance it can be seen, that the amplitude of the
flux surface corrugation is the same for L-mode and H-mode, as visualized in this thesis.
Additionally, a comparison between vacuum approximation and a corresponding 3D free-
boundary NEMEC simulation for the L-mode shows, that the vacuum approximation
can not fully capture the plasma response to the toroidal field ripple.

At the end of the presented work an outlook, for potential progress in the future, based on
this work, is given with the following points.

• Magnetic perturbations coils (MP coils) are non-axisymmetric coils for control purposes
of the plasma. A routine inside MIGEN for the creation of MP coils is not implemented
at the moment and would complete the 3D coil system. This would offer the possibility
to include further 3D perturbations inside NEMEC simulations.

• For the applicability of the developed coil model for ferromagnetic inserts the coil current
computation can be improved. As presented in this work the dependence of the filling
factor in the coil current computation is qualitatively as expected. However, for filling
factors near 100 % a weaker overcompensation of the toroidal field ripple than in [11] is
computed. It is observed within this work, that the geometry of the ferromagnetic insert
coils can reproduce the results [11] quantitatively by adjusting the coil currents manually
(figure 5.12). Therefore, the major sources of uncertainties are the extrapolation of the
magnetic permeability curve and the implementation of the filling factor.
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